

Easy, clean, reliable Python 2/3 compatibility

python-future is the missing compatibility layer between Python 2 and
Python 3. It allows you to use a single, clean Python 3.x-compatible
codebase to support both Python 2 and Python 3 with minimal overhead.

Contents:

	What’s New
	What’s new in version 0.18.2 (2019-10-30)

	What’s new in version 0.18.1 (2019-10-09)

	What’s new in version 0.18.0 (2019-10-09)

	What’s new in version 0.17.1 (2018-10-30)

	What’s new in version 0.17.0 (2018-10-19)

	What’s new in version 0.16.0 (2016-10-27)

	What’s new in version 0.15.2 (2015-09-11)

	What’s new in version 0.15.1 (2015-09-09)

	What’s new in version 0.15.0 (2015-07-25)

	Previous versions

	Overview: Easy, clean, reliable Python 2/3 compatibility
	Features

	Code examples

	Automatic conversion to Py2/3-compatible code

	Automatic translation

	Pre-commit hooks

	Licensing

	Next steps

	Quick-start guide
	Installation

	If you are writing code from scratch

	To convert existing Python 3 code

	To convert existing Python 2 code

	Standard library reorganization

	Python 2-only dependencies

	Next steps

	Cheat Sheet: Writing Python 2-3 compatible code
	Setup

	Essential syntax differences

	Strings and bytes

	Imports relative to a package

	Dictionaries

	Custom class behaviour

	Lists versus iterators

	Other builtins

	Standard library

	Imports
	__future__ imports

	Imports of builtins

	Standard library imports

	External standard-library backports

	Included full backports

	Using Python 2-only dependencies on Python 3

	Should I import unicode_literals?

	Next steps

	What else you need to know
	bytes

	str

	dict

	int

	isinstance

	Passing data to/from Python 2 libraries

	Native string type

	open()

	Custom __str__ methods

	Custom iterators

	Binding a method to a class

	Metaclasses

	Automatic conversion to Py2/3
	futurize: Py2 to Py2/3

	futurize quick-start guide

	pasteurize: Py3 to Py2/3

	Known limitations

	Frequently Asked Questions (FAQ)
	Who is this for?

	Why upgrade to Python 3?

	Porting philosophy

	Maturity

	Relationship between python-future and other compatibility tools

	Platform and version support

	Support

	Contributing

	Standard library incompatibilities
	array.array()

	array.array.read()

	base64.decodebytes() and base64.encodebytes()

	re.ASCII

	struct.pack()

	Older interfaces
	future.moves interface

	import_ and from_import functions

	Context-manager for import hooks

	install_hooks() call (deprecated)

	Changes in previous versions
	Changes in version 0.14.3 (2014-12-15)

	Changes in version 0.14.2 (2014-11-21)

	Changes in version 0.14.1 (2014-10-02)

	Changes in version 0.14.0 (2014-10-02)

	Changes in version 0.13.1 (2014-09-23)

	Changes in version 0.13.0 (2014-08-13)

	Changes in version 0.12.4 (2014-07-18)

	Changes in version 0.12.3 (2014-06-19)

	Changes in version 0.12.2 (2014-05-25)

	Changes in version 0.12.1 (2014-05-14)

	Changes in version 0.12.0 (2014-05-06)

	Changes in version 0.11.4 (2014-05-25)

	Changes in version 0.11.3 (2014-02-27)

	Changes in version 0.11 (2014-01-28)

	Changes in version 0.10.2 (2014-01-11)

	Changes in version 0.10.0 (2013-12-02)

	Changes in version 0.9 (2013-11-06)

	Changes in version 0.8 (2013-10-28)

	Summary of all changes

	Licensing and credits
	Licence

	Sponsors

	Maintainer

	Authors

	Other Credits

	API Reference (in progress)
	future.builtins Interface

	Backported types from Python 3

	future.standard_library Interface

	future.utils Interface

	past.builtins Interface

	Forward-ported types from Python 2

Indices and tables

	Index

	Module Index

	Search Page

What’s New

What’s new in version 0.18.2 (2019-10-30)

This is a minor bug-fix release containing a number of fixes:

	Fix min/max functions with generators, and ‘None’ default (PR #514)

	Use BaseException in raise_() (PR #515)

	Fix builtins.round() for Decimals (Issue #501)

	Fix raise_from() to prevent failures with immutable classes (PR #518)

	Make FixInput idempotent (Issue #427)

	Fix type in newround (PR #521)

	Support mimetype guessing in urllib2 for Py3.8+ (Issue #508)

Python 3.8 is not yet officially supported.

What’s new in version 0.18.1 (2019-10-09)

This is a minor bug-fix release containing a fix for raise_()
when passed an exception that’s not an Exception (e.g. BaseException
subclasses)

What’s new in version 0.18.0 (2019-10-09)

This is a major bug-fix and feature release, including:

	Fix collections.abc import for py38+

	Remove import for isnewbytes() function, reducing CPU cost significantly

	Fix bug with importing past.translation when importing past which breaks zipped python installations

	Fix an issue with copyreg import under Py3 that results in unexposed stdlib functionality

	Export and document types in future.utils

	Update behavior of newstr.__eq__() to match str.__eq__() as per reference docs

	Fix raising and the raising fixer to handle cases where the syntax is ambigious

	Allow “default” parameter in min() and max() (Issue #334)

	Implement __hash__() in newstr (Issue #454)

	Future proof some version checks to handle the fact that Py4 won’t be a major breaking release

	Fix urllib.request imports for Python 3.8 compatibility (Issue #447)

	Fix future import ordering (Issue #445)

	Fixed bug in fix_division_safe fixture (Issue #434)

	Do not globally destroy re.ASCII in PY3

	Fix a bug in email.Message.set_boundary() (Issue #429)

	Implement format_map() in str

	Implement readinto() for socket.fp

As well as a number of corrections to a variety of documentation, and updates to
test infrastructure.

What’s new in version 0.17.1 (2018-10-30)

This release address a packaging error because of an erroneous declaration that
any built wheels are universal.

What’s new in version 0.17.0 (2018-10-19)

This is a major bug-fix release, including:

	Fix from collections import ChainMap after install_aliases() (issue #226)

	Fix multiple import from __future__ bug in futurize (issue #113)

	Add support for proper %s formatting of newbytes

	Properly implement iterator protocol for newrange object

	Fix past.translation on read-only file systems

	Fix Tkinter import bug introduced in Python 2.7.4 (issue #262)

	Correct TypeError to ValueError in a specific edge case for newrange

	Support inequality tests betwen newstrs and newbytes

	Add type check to __get__ in newsuper

	Fix fix_divsion_safe to support better conversion of complex expressions, and
skip obvious float division.

As well as a number of corrections to a variety of documentation, and updates to
test infrastructure.

What’s new in version 0.16.0 (2016-10-27)

This release removes the configparser package as an alias for
ConfigParser on Py2 to improve compatibility with the backported
configparser package <https://pypi.org/project/configparser/>. Previously
python-future and the PyPI configparser backport clashed, causing
various compatibility issues. (Issues #118, #181)

If your code previously relied on configparser being supplied by
python-future, the recommended upgrade path is to run pip install
configparser or add configparser to your requirements.txt file.

Note that, if you are upgrading future with pip, you may need to
uninstall the old version of future or manually remove the
site-packages/future-0.15.2-py2.7.egg folder for this change to take
effect on your system.

This releases also fixes these bugs:

	Fix newbytes constructor bug. (Issue #171)

	Fix semantics of bool() with newobject. (Issue #211)

	Fix standard_library.install_aliases() on PyPy. (Issue #205)

	Fix assertRaises for pow and compile` on Python 3.5. (Issue #183)

	Fix return argument of future.utils.ensure_new_type if conversion to
new type does not exist. (Issue #185)

	Add missing cmp_to_key for Py2.6. (Issue #189)

	Allow the old_div fixer to be disabled. (Issue #190)

	Improve compatibility with Google App Engine. (Issue #231)

	Add some missing imports to the tkinter and tkinter.filedialog
package namespaces. (Issues #212 and #233)

	More complete implementation of raise_from on PY3. (Issues #141,
#213 and #235, fix provided by Varriount)

What’s new in version 0.15.2 (2015-09-11)

This is a minor bug-fix release:

	Fix socket.create_connection() backport on Py2.6 (issue #162)

	Add more tests of urllib.request etc.

	Fix newsuper() calls from the __init__ method of PyQt subclassses
(issue #160, thanks to Christopher Arndt)

What’s new in version 0.15.1 (2015-09-09)

This is a minor bug-fix release:

	Use 3-argument socket.create_connection() backport to restore Py2.6
compatibility in urllib.request.urlopen() (issue #162)

	Remove breakpoint in future.backports.http.client triggered on certain
data (issue #164)

	Move exec fixer to stage 1 of futurize because the forward-compatible exec(a, b)
idiom is supported in Python 2.6 and 2.7. See
https://docs.python.org/2/reference/simple_stmts.html#exec.

What’s new in version 0.15.0 (2015-07-25)

This release fixes compatibility bugs with CherryPy’s Py2/3 compat layer and
the latest version of the urllib3 package. It also adds some additional
backports for Py2.6 and Py2.7 from Py3.4’s standard library.

New features:

	install_aliases() now exposes full backports of the Py3 urllib submodules
(parse, request etc.) from future.backports.urllib as submodules
of urllib on Py2. This implies, for example, that
urllib.parse.unquote now takes an optional encoding argument as it does
on Py3. This improves compatibility with CherryPy’s Py2/3 compat layer (issue
#158).

	tkinter.ttk support (issue #151)

	Backport of collections.ChainMap (issue #150)

	Backport of itertools.count for Py2.6 (issue #152)

	Enable and document support for the surrogateescape error handler for newstr and newbytes objects on Py2.x (issue #116). This feature is currently in alpha.

	Add constants to http.client such as HTTP_PORT and BAD_REQUEST (issue #137)

	Backport of reprlib.recursive_repr to Py2

Bug fixes:

	Add HTTPMessage to http.client, which is missing from httplib.__all__ on Python <= 2.7.10. This restores compatibility with the latest urllib3 package (issue #159, thanks to Waldemar Kornewald)

	Expand newint.__divmod__ and newint.__rdivmod__ to fall back to <type ‘long’>
implementations where appropriate (issue #146 - thanks to Matt Bogosian)

	Fix newrange slicing for some slice/range combos (issue #132, thanks to Brad Walker)

	Small doc fixes (thanks to Michael Joseph and Tim Tröndle)

	Improve robustness of test suite against opening .pyc files as text on Py2

	Update backports of Counter and OrderedDict to use the newer
implementations from Py3.4. This fixes .copy() preserving subclasses etc.

	futurize no longer breaks working Py2 code by changing basestring to
str. Instead it imports the basestring forward-port from
past.builtins (issues #127 and #156)

	future.utils: add string_types etc. and update docs (issue #126)

Previous versions

See Changes in previous versions for versions prior to v0.15.

Overview: Easy, clean, reliable Python 2/3 compatibility

[image: _images/python-future.svg]
 [https://travis-ci.org/PythonCharmers/python-future][image: _images/5bc802ddd308b22c76d777966bb929159fc452da.svg]
 [https://python-future.readthedocs.io/en/latest/?badge=latest]python-future is the missing compatibility layer between Python 2 and
Python 3. It allows you to use a single, clean Python 3.x-compatible
codebase to support both Python 2 and Python 3 with minimal overhead.

It provides future and past packages with backports and forward
ports of features from Python 3 and 2. It also comes with futurize and
pasteurize, customized 2to3-based scripts that helps you to convert
either Py2 or Py3 code easily to support both Python 2 and 3 in a single
clean Py3-style codebase, module by module.

Notable projects that use python-future for Python 2/3 compatibility
are Mezzanine [http://mezzanine.jupo.org/] and ObsPy [http://obspy.org].

Features

	future.builtins package (also available as builtins on Py2) provides
backports and remappings for 20 builtins with different semantics on Py3
versus Py2

	support for directly importing 30 standard library modules under
their Python 3 names on Py2

	support for importing the other 14 refactored standard library modules
under their Py3 names relatively cleanly via
future.standard_library and future.moves

	past.builtins package provides forward-ports of 19 Python 2 types and
builtin functions. These can aid with per-module code migrations.

	past.translation package supports transparent translation of Python 2
modules to Python 3 upon import. [This feature is currently in alpha.]

	1000+ unit tests, including many from the Py3.3 source tree.

	futurize and pasteurize scripts based on 2to3 and parts of
3to2 and python-modernize, for automatic conversion from either Py2
or Py3 to a clean single-source codebase compatible with Python 2.6+ and
Python 3.3+.

	a curated set of utility functions and decorators in future.utils and
past.utils selected from Py2/3 compatibility interfaces from projects
like six, IPython, Jinja2, Django, and Pandas.

	support for the surrogateescape error handler when encoding and
decoding the backported str and bytes objects. [This feature is
currently in alpha.]

	support for pre-commit hooks

Code examples

Replacements for Py2’s built-in functions and types are designed to be imported
at the top of each Python module together with Python’s built-in __future__
statements. For example, this code behaves identically on Python 2.6/2.7 after
these imports as it does on Python 3.3+:

from __future__ import absolute_import, division, print_function
from builtins import (bytes, str, open, super, range,
 zip, round, input, int, pow, object)

Backported Py3 bytes object
b = bytes(b'ABCD')
assert list(b) == [65, 66, 67, 68]
assert repr(b) == "b'ABCD'"
These raise TypeErrors:
b + u'EFGH'
bytes(b',').join([u'Fred', u'Bill'])

Backported Py3 str object
s = str(u'ABCD')
assert s != bytes(b'ABCD')
assert isinstance(s.encode('utf-8'), bytes)
assert isinstance(b.decode('utf-8'), str)
assert repr(s) == "'ABCD'" # consistent repr with Py3 (no u prefix)
These raise TypeErrors:
bytes(b'B') in s
s.find(bytes(b'A'))

Extra arguments for the open() function
f = open('japanese.txt', encoding='utf-8', errors='replace')

New zero-argument super() function:
class VerboseList(list):
 def append(self, item):
 print('Adding an item')
 super().append(item)

New iterable range object with slicing support
for i in range(10**15)[:10]:
 pass

Other iterators: map, zip, filter
my_iter = zip(range(3), ['a', 'b', 'c'])
assert my_iter != list(my_iter)

The round() function behaves as it does in Python 3, using
"Banker's Rounding" to the nearest even last digit:
assert round(0.1250, 2) == 0.12

input() replaces Py2's raw_input() (with no eval()):
name = input('What is your name? ')
print('Hello ' + name)

pow() supports fractional exponents of negative numbers like in Py3:
z = pow(-1, 0.5)

Compatible output from isinstance() across Py2/3:
assert isinstance(2**64, int) # long integers
assert isinstance(u'blah', str)
assert isinstance('blah', str) # only if unicode_literals is in effect

Py3-style iterators written as new-style classes (subclasses of
future.types.newobject) are automatically backward compatible with Py2:
class Upper(object):
 def __init__(self, iterable):
 self._iter = iter(iterable)
 def __next__(self): # note the Py3 interface
 return next(self._iter).upper()
 def __iter__(self):
 return self
assert list(Upper('hello')) == list('HELLO')

There is also support for renamed standard library modules. The recommended
interface works like this:

Many Py3 module names are supported directly on both Py2.x and 3.x:
from http.client import HttpConnection
import html.parser
import queue
import xmlrpc.client

Refactored modules with clashing names on Py2 and Py3 are supported
as follows:
from future import standard_library
standard_library.install_aliases()

Then, for example:
from itertools import filterfalse, zip_longest
from urllib.request import urlopen
from collections import ChainMap
from collections import UserDict, UserList, UserString
from subprocess import getoutput, getstatusoutput
from collections import Counter, OrderedDict # backported to Py2.6

Automatic conversion to Py2/3-compatible code

python-future comes with two scripts called futurize and
pasteurize to aid in making Python 2 code or Python 3 code compatible with
both platforms (Py2/3). It is based on 2to3 and uses fixers from lib2to3,
lib3to2, and python-modernize, as well as custom fixers.

futurize passes Python 2 code through all the appropriate fixers to turn it
into valid Python 3 code, and then adds __future__ and future package
imports so that it also runs under Python 2.

For conversions from Python 3 code to Py2/3, use the pasteurize script
instead. This converts Py3-only constructs (e.g. new metaclass syntax) to
Py2/3 compatible constructs and adds __future__ and future imports to
the top of each module.

In both cases, the result should be relatively clean Py3-style code that runs
mostly unchanged on both Python 2 and Python 3.

Futurize: 2 to both

For example, running futurize -w mymodule.py turns this Python 2 code:

import Queue
from urllib2 import urlopen

def greet(name):
 print 'Hello',
 print name

print "What's your name?",
name = raw_input()
greet(name)

into this code which runs on both Py2 and Py3:

from __future__ import print_function
from future import standard_library
standard_library.install_aliases()
from builtins import input
import queue
from urllib.request import urlopen

def greet(name):
 print('Hello', end=' ')
 print(name)

print("What's your name?", end=' ')
name = input()
greet(name)

See futurize: Py2 to Py2/3 and pasteurize: Py3 to Py2/3 for more details.

Automatic translation

The past package can automatically translate some simple Python 2
modules to Python 3 upon import. The goal is to support the “long tail” of
real-world Python 2 modules (e.g. on PyPI) that have not been ported yet. For
example, here is how to use a Python 2-only package called plotrique on
Python 3. First install it:

$ pip3 install plotrique==0.2.5-7 --no-compile # to ignore SyntaxErrors

(or use pip if this points to your Py3 environment.)

Then pass a whitelist of module name prefixes to the autotranslate() function.
Example:

$ python3

>>> from past.translation import autotranslate
>>> autotranslate(['plotrique'])
>>> import plotrique

This transparently translates and runs the plotrique module and any
submodules in the plotrique package that plotrique imports.

This is intended to help you migrate to Python 3 without the need for all
your code’s dependencies to support Python 3 yet. It should be used as a
last resort; ideally Python 2-only dependencies should be ported
properly to a Python 2/3 compatible codebase using a tool like
futurize and the changes should be pushed to the upstream project.

Note: the auto-translation feature is still in alpha; it needs more testing and
development, and will likely never be perfect.

For more info, see Using Python 2-only dependencies on Python 3.

Pre-commit hooks

Pre-commit [https://pre-commit.com/] is a framework for managing and maintaining
multi-language pre-commit hooks.

In case you need to port your project from Python 2 to Python 3, you might consider
using such hook during the transition period.

First:

$ pip install pre-commit

and then in your project’s directory:

$ pre-commit install

Next, you need to add this entry to your .pre-commit-config.yaml

- repo: https://github.com/PythonCharmers/python-future
 rev: master
 hooks:
 - id: futurize
 args: [--both-stages]

The args part is optional, by default only stage1 is applied.

Licensing

	Author

	Ed Schofield, Jordan M. Adler, et al

	Copyright

	2013-2019 Python Charmers Pty Ltd, Australia.

	Sponsors

	Python Charmers Pty Ltd, Australia, and Python Charmers Pte
Ltd, Singapore. http://pythoncharmers.com

Pinterest https://opensource.pinterest.com/

	Licence

	MIT. See LICENSE.txt or here [http://python-future.org/credits.html].

	Other credits

	See here [http://python-future.org/credits.html].

Next steps

If you are new to Python-Future, check out the Quickstart Guide [http://python-future.org/quickstart.html].

For an update on changes in the latest version, see the What’s New [http://python-future.org/whatsnew.html] page.

Quick-start guide

You can use future to help to port your code from Python 2 to Python 3
today – and still have it run on Python 2.

If you already have Python 3 code, you can instead use future to
offer Python 2 compatibility with almost no extra work.

Installation

To install the latest stable version, type:

pip install future

If you would prefer the latest development version, it is available here [https://github.com/PythonCharmers/python-future].

If you are writing code from scratch

The easiest way is to start each new module with these lines:

from __future__ import (absolute_import, division,
 print_function, unicode_literals)
from builtins import *

Then write standard Python 3 code. The future package will
provide support for running your code on Python 2.7, and 3.4+ mostly
unchanged.

	For explicit import forms, see Explicit imports.

	For more details, see What else you need to know.

	For a cheat sheet, see Cheat Sheet: Writing Python 2-3 compatible code.

To convert existing Python 3 code

To offer backward compatibility with Python 2 from your Python 3 code,
you can use the pasteurize script. This adds these lines at the top of each
module:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

from builtins import open
from builtins import str
etc., as needed

from future import standard_library
standard_library.install_aliases()

and converts several Python 3-only constructs (like keyword-only arguments) to a
form compatible with both Py3 and Py2. Most remaining Python 3 code should
simply work on Python 2.

See pasteurize: Py3 to Py2/3 for more details.

To convert existing Python 2 code

The futurize script passes Python 2 code through all the appropriate fixers
to turn it into valid Python 3 code, and then adds __future__ and
future package imports to re-enable compatibility with Python 2.

For example, running futurize turns this Python 2 code:

import ConfigParser # Py2 module name

class Upper(object):
 def __init__(self, iterable):
 self._iter = iter(iterable)
 def next(self): # Py2-style iterator interface
 return next(self._iter).upper()
 def __iter__(self):
 return self

itr = Upper('hello')
print next(itr),
for letter in itr:
 print letter, # Py2-style print statement

into this code which runs on both Py2 and Py3:

from __future__ import print_function
from future import standard_library
standard_library.install_aliases()
from future.builtins import next
from future.builtins import object
import configparser # Py3-style import

class Upper(object):
 def __init__(self, iterable):
 self._iter = iter(iterable)
 def __next__(self): # Py3-style iterator interface
 return next(self._iter).upper()
 def __iter__(self):
 return self

itr = Upper('hello')
print(next(itr), end=' ') # Py3-style print function
for letter in itr:
 print(letter, end=' ')

To write out all the changes to your Python files that futurize suggests,
use the -w flag.

For complex projects, it is probably best to divide the porting into two stages.
Stage 1 is for “safe” changes that modernize the code but do not break Python
2.7 compatibility or introduce a dependency on the future package. Stage 2
is to complete the process.

See Stage 1: “safe” fixes and Stage 2: Py3-style code with wrappers for Py2 for more details.

Standard library reorganization

future supports the standard library reorganization (PEP 3108) via
one of several mechanisms, allowing most moved standard library modules
to be accessed under their Python 3 names and locations in Python 2:

from future import standard_library
standard_library.install_aliases()

Then these Py3-style imports work on both Python 2 and Python 3:
import socketserver
import queue
from collections import UserDict, UserList, UserString
from collections import ChainMap # even on Py2.7
from itertools import filterfalse, zip_longest

import html
import html.entities
import html.parser

import http
import http.client
import http.server
import http.cookies
import http.cookiejar

import urllib.request
import urllib.parse
import urllib.response
import urllib.error
import urllib.robotparser

import xmlrpc.client
import xmlrpc.server

and others. For a complete list, see Direct imports.

Python 2-only dependencies

If you have dependencies that support only Python 2, you may be able to use the
past module to automatically translate these Python 2 modules to Python 3
upon import. First, install the Python 2-only package into your Python 3
environment:

$ pip3 install mypackagename --no-compile # to ignore SyntaxErrors

(or use pip if this points to your Py3 environment.)

Then add the following code at the top of your (Py3 or Py2/3-compatible)
code:

from past.translation import autotranslate
autotranslate(['mypackagename'])
import mypackagename

This feature is experimental, and we would appreciate your feedback on
how well this works or doesn’t work for you. Please file an issue here [https://github.com/PythonCharmers/python-future] or post to the
python-porting [https://mail.python.org/mailman/listinfo/python-porting]
mailing list.

For more information on the automatic translation feature, see Using Python 2-only dependencies on Python 3.

Next steps

For more information about writing Py2/3-compatible code, see:

	Cheat Sheet: Writing Python 2-3 compatible code

	What else you need to know.

Cheat Sheet: Writing Python 2-3 compatible code

	Copyright (c): 2013-2019 Python Charmers Pty Ltd, Australia.

	Author: Ed Schofield.

	Licence: Creative Commons Attribution.

A PDF version is here: http://python-future.org/compatible_idioms.pdf

This notebook shows you idioms for writing future-proof code that is
compatible with both versions of Python: 2 and 3. It accompanies Ed
Schofield’s talk at PyCon AU 2014, “Writing 2/3 compatible code”. (The
video is here: http://www.youtube.com/watch?v=KOqk8j11aAI&t=10m14s.)

Minimum versions:

	Python 2: 2.7+

	Python 3: 3.4+

Setup

The imports below refer to these pip-installable packages on PyPI:

import future # pip install future
import builtins # pip install future
import past # pip install future
import six # pip install six

The following scripts are also pip-installable:

futurize # pip install future
pasteurize # pip install future

See http://python-future.org and https://pythonhosted.org/six/ for more
information.

Essential syntax differences

print

Python 2 only:
print 'Hello'

Python 2 and 3:
print('Hello')

To print multiple strings, import print_function to prevent Py2 from
interpreting it as a tuple:

Python 2 only:
print 'Hello', 'Guido'

Python 2 and 3:
from __future__ import print_function # (at top of module)

print('Hello', 'Guido')

Python 2 only:
print >> sys.stderr, 'Hello'

Python 2 and 3:
from __future__ import print_function

print('Hello', file=sys.stderr)

Python 2 only:
print 'Hello',

Python 2 and 3:
from __future__ import print_function

print('Hello', end='')

Raising exceptions

Python 2 only:
raise ValueError, "dodgy value"

Python 2 and 3:
raise ValueError("dodgy value")

Raising exceptions with a traceback:

Python 2 only:
traceback = sys.exc_info()[2]
raise ValueError, "dodgy value", traceback

Python 3 only:
raise ValueError("dodgy value").with_traceback()

Python 2 and 3: option 1
from six import reraise as raise_
or
from future.utils import raise_

traceback = sys.exc_info()[2]
raise_(ValueError, "dodgy value", traceback)

Python 2 and 3: option 2
from future.utils import raise_with_traceback

raise_with_traceback(ValueError("dodgy value"))

Exception chaining (PEP 3134):

Setup:
class DatabaseError(Exception):
 pass

Python 3 only
class FileDatabase:
 def __init__(self, filename):
 try:
 self.file = open(filename)
 except IOError as exc:
 raise DatabaseError('failed to open') from exc

Python 2 and 3:
from future.utils import raise_from

class FileDatabase:
 def __init__(self, filename):
 try:
 self.file = open(filename)
 except IOError as exc:
 raise_from(DatabaseError('failed to open'), exc)

Testing the above:
try:
 fd = FileDatabase('non_existent_file.txt')
except Exception as e:
 assert isinstance(e.__cause__, IOError) # FileNotFoundError on Py3.3+ inherits from IOError

Catching exceptions

Python 2 only:
try:
 ...
except ValueError, e:
 ...

Python 2 and 3:
try:
 ...
except ValueError as e:
 ...

Division

Integer division (rounding down):

Python 2 only:
assert 2 / 3 == 0

Python 2 and 3:
assert 2 // 3 == 0

“True division” (float division):

Python 3 only:
assert 3 / 2 == 1.5

Python 2 and 3:
from __future__ import division # (at top of module)

assert 3 / 2 == 1.5

“Old division” (i.e. compatible with Py2 behaviour):

Python 2 only:
a = b / c # with any types

Python 2 and 3:
from past.utils import old_div

a = old_div(b, c) # always same as / on Py2

Long integers

Short integers are gone in Python 3 and long has become int
(without the trailing L in the repr).

Python 2 only
k = 9223372036854775808L

Python 2 and 3:
k = 9223372036854775808

Python 2 only
bigint = 1L

Python 2 and 3
from builtins import int
bigint = int(1)

To test whether a value is an integer (of any kind):

Python 2 only:
if isinstance(x, (int, long)):
 ...

Python 3 only:
if isinstance(x, int):
 ...

Python 2 and 3: option 1
from builtins import int # subclass of long on Py2

if isinstance(x, int): # matches both int and long on Py2
 ...

Python 2 and 3: option 2
from past.builtins import long

if isinstance(x, (int, long)):
 ...

Octal constants

0644 # Python 2 only

0o644 # Python 2 and 3

Backtick repr

`x` # Python 2 only

repr(x) # Python 2 and 3

Metaclasses

class BaseForm(object):
 pass

class FormType(type):
 pass

Python 2 only:
class Form(BaseForm):
 __metaclass__ = FormType
 pass

Python 3 only:
class Form(BaseForm, metaclass=FormType):
 pass

Python 2 and 3:
from six import with_metaclass
or
from future.utils import with_metaclass

class Form(with_metaclass(FormType, BaseForm)):
 pass

Strings and bytes

Unicode (text) string literals

If you are upgrading an existing Python 2 codebase, it may be preferable
to mark up all string literals as unicode explicitly with u
prefixes:

Python 2 only
s1 = 'The Zen of Python'
s2 = u'きたないのよりきれいな方がいい\n'

Python 2 and 3
s1 = u'The Zen of Python'
s2 = u'きたないのよりきれいな方がいい\n'

The futurize and python-modernize tools do not currently offer
an option to do this automatically.

If you are writing code for a new project or new codebase, you can use
this idiom to make all string literals in a module unicode strings:

Python 2 and 3
from __future__ import unicode_literals # at top of module

s1 = 'The Zen of Python'
s2 = 'きたないのよりきれいな方がいい\n'

See http://python-future.org/unicode_literals.html for more discussion
on which style to use.

Byte-string literals

Python 2 only
s = 'This must be a byte-string'

Python 2 and 3
s = b'This must be a byte-string'

To loop over a byte-string with possible high-bit characters, obtaining
each character as a byte-string of length 1:

Python 2 only:
for bytechar in 'byte-string with high-bit chars like \xf9':
 ...

Python 3 only:
for myint in b'byte-string with high-bit chars like \xf9':
 bytechar = bytes([myint])

Python 2 and 3:
from builtins import bytes
for myint in bytes(b'byte-string with high-bit chars like \xf9'):
 bytechar = bytes([myint])

As an alternative, chr() and .encode('latin-1') can be used to
convert an int into a 1-char byte string:

Python 3 only:
for myint in b'byte-string with high-bit chars like \xf9':
 char = chr(myint) # returns a unicode string
 bytechar = char.encode('latin-1')

Python 2 and 3:
from builtins import bytes, chr
for myint in bytes(b'byte-string with high-bit chars like \xf9'):
 char = chr(myint) # returns a unicode string
 bytechar = char.encode('latin-1') # forces returning a byte str

basestring

Python 2 only:
a = u'abc'
b = 'def'
assert (isinstance(a, basestring) and isinstance(b, basestring))

Python 2 and 3: alternative 1
from past.builtins import basestring # pip install future

a = u'abc'
b = b'def'
assert (isinstance(a, basestring) and isinstance(b, basestring))

Python 2 and 3: alternative 2: refactor the code to avoid considering
byte-strings as strings.

from builtins import str
a = u'abc'
b = b'def'
c = b.decode()
assert isinstance(a, str) and isinstance(c, str)
...

unicode

Python 2 only:
templates = [u"blog/blog_post_detail_%s.html" % unicode(slug)]

Python 2 and 3: alternative 1
from builtins import str
templates = [u"blog/blog_post_detail_%s.html" % str(slug)]

Python 2 and 3: alternative 2
from builtins import str as text
templates = [u"blog/blog_post_detail_%s.html" % text(slug)]

StringIO

Python 2 only:
from StringIO import StringIO
or:
from cStringIO import StringIO

Python 2 and 3:
from io import BytesIO # for handling byte strings
from io import StringIO # for handling unicode strings

Imports relative to a package

Suppose the package is:

mypackage/
 __init__.py
 submodule1.py
 submodule2.py

and the code below is in submodule1.py:

Python 2 only:
import submodule2

Python 2 and 3:
from . import submodule2

Python 2 and 3:
To make Py2 code safer (more like Py3) by preventing
implicit relative imports, you can also add this to the top:
from __future__ import absolute_import

Dictionaries

heights = {'Fred': 175, 'Anne': 166, 'Joe': 192}

Iterating through dict keys/values/items

Iterable dict keys:

Python 2 only:
for key in heights.iterkeys():
 ...

Python 2 and 3:
for key in heights:
 ...

Iterable dict values:

Python 2 only:
for value in heights.itervalues():
 ...

Idiomatic Python 3
for value in heights.values(): # extra memory overhead on Py2
 ...

Python 2 and 3: option 1
from builtins import dict

heights = dict(Fred=175, Anne=166, Joe=192)
for key in heights.values(): # efficient on Py2 and Py3
 ...

Python 2 and 3: option 2
from future.utils import itervalues
or
from six import itervalues

for key in itervalues(heights):
 ...

Iterable dict items:

Python 2 only:
for (key, value) in heights.iteritems():
 ...

Python 2 and 3: option 1
for (key, value) in heights.items(): # inefficient on Py2
 ...

Python 2 and 3: option 2
from future.utils import viewitems

for (key, value) in viewitems(heights): # also behaves like a set
 ...

Python 2 and 3: option 3
from future.utils import iteritems
or
from six import iteritems

for (key, value) in iteritems(heights):
 ...

dict keys/values/items as a list

dict keys as a list:

Python 2 only:
keylist = heights.keys()
assert isinstance(keylist, list)

Python 2 and 3:
keylist = list(heights)
assert isinstance(keylist, list)

dict values as a list:

Python 2 only:
heights = {'Fred': 175, 'Anne': 166, 'Joe': 192}
valuelist = heights.values()
assert isinstance(valuelist, list)

Python 2 and 3: option 1
valuelist = list(heights.values()) # inefficient on Py2

Python 2 and 3: option 2
from builtins import dict

heights = dict(Fred=175, Anne=166, Joe=192)
valuelist = list(heights.values())

Python 2 and 3: option 3
from future.utils import listvalues

valuelist = listvalues(heights)

Python 2 and 3: option 4
from future.utils import itervalues
or
from six import itervalues

valuelist = list(itervalues(heights))

dict items as a list:

Python 2 and 3: option 1
itemlist = list(heights.items()) # inefficient on Py2

Python 2 and 3: option 2
from future.utils import listitems

itemlist = listitems(heights)

Python 2 and 3: option 3
from future.utils import iteritems
or
from six import iteritems

itemlist = list(iteritems(heights))

Custom class behaviour

Custom iterators

Python 2 only
class Upper(object):
 def __init__(self, iterable):
 self._iter = iter(iterable)
 def next(self): # Py2-style
 return self._iter.next().upper()
 def __iter__(self):
 return self

itr = Upper('hello')
assert itr.next() == 'H' # Py2-style
assert list(itr) == list('ELLO')

Python 2 and 3: option 1
from builtins import object

class Upper(object):
 def __init__(self, iterable):
 self._iter = iter(iterable)
 def __next__(self): # Py3-style iterator interface
 return next(self._iter).upper() # builtin next() function calls
 def __iter__(self):
 return self

itr = Upper('hello')
assert next(itr) == 'H' # compatible style
assert list(itr) == list('ELLO')

Python 2 and 3: option 2
from future.utils import implements_iterator

@implements_iterator
class Upper(object):
 def __init__(self, iterable):
 self._iter = iter(iterable)
 def __next__(self): # Py3-style iterator interface
 return next(self._iter).upper() # builtin next() function calls
 def __iter__(self):
 return self

itr = Upper('hello')
assert next(itr) == 'H'
assert list(itr) == list('ELLO')

Custom __str__ methods

Python 2 only:
class MyClass(object):
 def __unicode__(self):
 return 'Unicode string: \u5b54\u5b50'
 def __str__(self):
 return unicode(self).encode('utf-8')

a = MyClass()
print(a) # prints encoded string

Python 2 and 3:
from future.utils import python_2_unicode_compatible

@python_2_unicode_compatible
class MyClass(object):
 def __str__(self):
 return u'Unicode string: \u5b54\u5b50'

a = MyClass()
print(a) # prints string encoded as utf-8 on Py2

Unicode string: 孔子

Custom __nonzero__ vs __bool__ method:

Python 2 only:
class AllOrNothing(object):
 def __init__(self, l):
 self.l = l
 def __nonzero__(self):
 return all(self.l)

container = AllOrNothing([0, 100, 200])
assert not bool(container)

Python 2 and 3:
from builtins import object

class AllOrNothing(object):
 def __init__(self, l):
 self.l = l
 def __bool__(self):
 return all(self.l)

container = AllOrNothing([0, 100, 200])
assert not bool(container)

Lists versus iterators

xrange

Python 2 only:
for i in xrange(10**8):
 ...

Python 2 and 3: forward-compatible
from builtins import range
for i in range(10**8):
 ...

Python 2 and 3: backward-compatible
from past.builtins import xrange
for i in xrange(10**8):
 ...

range

Python 2 only
mylist = range(5)
assert mylist == [0, 1, 2, 3, 4]

Python 2 and 3: forward-compatible: option 1
mylist = list(range(5)) # copies memory on Py2
assert mylist == [0, 1, 2, 3, 4]

Python 2 and 3: forward-compatible: option 2
from builtins import range

mylist = list(range(5))
assert mylist == [0, 1, 2, 3, 4]

Python 2 and 3: option 3
from future.utils import lrange

mylist = lrange(5)
assert mylist == [0, 1, 2, 3, 4]

Python 2 and 3: backward compatible
from past.builtins import range

mylist = range(5)
assert mylist == [0, 1, 2, 3, 4]

map

Python 2 only:
mynewlist = map(f, myoldlist)
assert mynewlist == [f(x) for x in myoldlist]

Python 2 and 3: option 1
Idiomatic Py3, but inefficient on Py2
mynewlist = list(map(f, myoldlist))
assert mynewlist == [f(x) for x in myoldlist]

Python 2 and 3: option 2
from builtins import map

mynewlist = list(map(f, myoldlist))
assert mynewlist == [f(x) for x in myoldlist]

Python 2 and 3: option 3
try:
 import itertools.imap as map
except ImportError:
 pass

mynewlist = list(map(f, myoldlist)) # inefficient on Py2
assert mynewlist == [f(x) for x in myoldlist]

Python 2 and 3: option 4
from future.utils import lmap

mynewlist = lmap(f, myoldlist)
assert mynewlist == [f(x) for x in myoldlist]

Python 2 and 3: option 5
from past.builtins import map

mynewlist = map(f, myoldlist)
assert mynewlist == [f(x) for x in myoldlist]

imap

Python 2 only:
from itertools import imap

myiter = imap(func, myoldlist)
assert isinstance(myiter, iter)

Python 3 only:
myiter = map(func, myoldlist)
assert isinstance(myiter, iter)

Python 2 and 3: option 1
from builtins import map

myiter = map(func, myoldlist)
assert isinstance(myiter, iter)

Python 2 and 3: option 2
try:
 import itertools.imap as map
except ImportError:
 pass

myiter = map(func, myoldlist)
assert isinstance(myiter, iter)

Python 2 and 3: option 3
from six.moves import map

myiter = map(func, myoldlist)
assert isinstance(myiter, iter)

zip, izip

As above with zip and itertools.izip.

filter, ifilter

As above with filter and itertools.ifilter too.

Other builtins

File IO with open()

Python 2 only
f = open('myfile.txt')
data = f.read() # as a byte string
text = data.decode('utf-8')

Python 2 and 3: alternative 1
from io import open
f = open('myfile.txt', 'rb')
data = f.read() # as bytes
text = data.decode('utf-8') # unicode, not bytes

Python 2 and 3: alternative 2
from io import open
f = open('myfile.txt', encoding='utf-8')
text = f.read() # unicode, not bytes

reduce()

Python 2 only:
assert reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) == 1+2+3+4+5

Python 2 and 3:
from functools import reduce

assert reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) == 1+2+3+4+5

raw_input()

Python 2 only:
name = raw_input('What is your name? ')
assert isinstance(name, str) # native str

Python 2 and 3:
from builtins import input

name = input('What is your name? ')
assert isinstance(name, str) # native str on Py2 and Py3

input()

Python 2 only:
input("Type something safe please: ")

Python 2 and 3
from builtins import input
eval(input("Type something safe please: "))

Warning: using either of these is unsafe with untrusted input.

file()

Python 2 only:
f = file(pathname)

Python 2 and 3:
f = open(pathname)

But preferably, use this:
from io import open
f = open(pathname, 'rb') # if f.read() should return bytes
or
f = open(pathname, 'rt') # if f.read() should return unicode text

exec

Python 2 only:
exec 'x = 10'

Python 2 and 3:
exec('x = 10')

Python 2 only:
g = globals()
exec 'x = 10' in g

Python 2 and 3:
g = globals()
exec('x = 10', g)

Python 2 only:
l = locals()
exec 'x = 10' in g, l

Python 2 and 3:
exec('x = 10', g, l)

execfile()

Python 2 only:
execfile('myfile.py')

Python 2 and 3: alternative 1
from past.builtins import execfile

execfile('myfile.py')

Python 2 and 3: alternative 2
exec(compile(open('myfile.py').read()))

This can sometimes cause this:
SyntaxError: function ... uses import * and bare exec ...
See https://github.com/PythonCharmers/python-future/issues/37

unichr()

Python 2 only:
assert unichr(8364) == '€'

Python 3 only:
assert chr(8364) == '€'

Python 2 and 3:
from builtins import chr
assert chr(8364) == '€'

intern()

Python 2 only:
intern('mystring')

Python 3 only:
from sys import intern
intern('mystring')

Python 2 and 3: alternative 1
from past.builtins import intern
intern('mystring')

Python 2 and 3: alternative 2
from six.moves import intern
intern('mystring')

Python 2 and 3: alternative 3
from future.standard_library import install_aliases
install_aliases()
from sys import intern
intern('mystring')

Python 2 and 3: alternative 2
try:
 from sys import intern
except ImportError:
 pass
intern('mystring')

apply()

args = ('a', 'b')
kwargs = {'kwarg1': True}

Python 2 only:
apply(f, args, kwargs)

Python 2 and 3: alternative 1
f(*args, **kwargs)

Python 2 and 3: alternative 2
from past.builtins import apply
apply(f, args, kwargs)

chr()

Python 2 only:
assert chr(64) == b'@'
assert chr(200) == b'\xc8'

Python 3 only: option 1
assert chr(64).encode('latin-1') == b'@'
assert chr(0xc8).encode('latin-1') == b'\xc8'

Python 2 and 3: option 1
from builtins import chr

assert chr(64).encode('latin-1') == b'@'
assert chr(0xc8).encode('latin-1') == b'\xc8'

Python 3 only: option 2
assert bytes([64]) == b'@'
assert bytes([0xc8]) == b'\xc8'

Python 2 and 3: option 2
from builtins import bytes

assert bytes([64]) == b'@'
assert bytes([0xc8]) == b'\xc8'

cmp()

Python 2 only:
assert cmp('a', 'b') < 0 and cmp('b', 'a') > 0 and cmp('c', 'c') == 0

Python 2 and 3: alternative 1
from past.builtins import cmp
assert cmp('a', 'b') < 0 and cmp('b', 'a') > 0 and cmp('c', 'c') == 0

Python 2 and 3: alternative 2
cmp = lambda(x, y): (x > y) - (x < y)
assert cmp('a', 'b') < 0 and cmp('b', 'a') > 0 and cmp('c', 'c') == 0

reload()

Python 2 only:
reload(mymodule)

Python 2 and 3
from imp import reload
reload(mymodule)

Standard library

dbm modules

Python 2 only
import anydbm
import whichdb
import dbm
import dumbdbm
import gdbm

Python 2 and 3: alternative 1
from future import standard_library
standard_library.install_aliases()

import dbm
import dbm.ndbm
import dbm.dumb
import dbm.gnu

Python 2 and 3: alternative 2
from future.moves import dbm
from future.moves.dbm import dumb
from future.moves.dbm import ndbm
from future.moves.dbm import gnu

Python 2 and 3: alternative 3
from six.moves import dbm_gnu
(others not supported)

commands / subprocess modules

Python 2 only
from commands import getoutput, getstatusoutput

Python 2 and 3
from future import standard_library
standard_library.install_aliases()

from subprocess import getoutput, getstatusoutput

StringIO module

Python 2 only
from StringIO import StringIO
from cStringIO import StringIO

Python 2 and 3
from io import BytesIO
and refactor StringIO() calls to BytesIO() if passing byte-strings

http module

Python 2 only:
import httplib
import Cookie
import cookielib
import BaseHTTPServer
import SimpleHTTPServer
import CGIHttpServer

Python 2 and 3 (after ``pip install future``):
import http.client
import http.cookies
import http.cookiejar
import http.server

xmlrpc module

Python 2 only:
import DocXMLRPCServer
import SimpleXMLRPCServer

Python 2 and 3 (after ``pip install future``):
import xmlrpc.server

Python 2 only:
import xmlrpclib

Python 2 and 3 (after ``pip install future``):
import xmlrpc.client

html escaping and entities

Python 2 and 3:
from cgi import escape

Safer (Python 2 and 3, after ``pip install future``):
from html import escape

Python 2 only:
from htmlentitydefs import codepoint2name, entitydefs, name2codepoint

Python 2 and 3 (after ``pip install future``):
from html.entities import codepoint2name, entitydefs, name2codepoint

html parsing

Python 2 only:
from HTMLParser import HTMLParser

Python 2 and 3 (after ``pip install future``)
from html.parser import HTMLParser

Python 2 and 3 (alternative 2):
from future.moves.html.parser import HTMLParser

urllib module

urllib is the hardest module to use from Python 2/3 compatible code.
You might want to switch to Requests (http://python-requests.org) instead.

Python 2 only:
from urlparse import urlparse
from urllib import urlencode
from urllib2 import urlopen, Request, HTTPError

Python 3 only:
from urllib.parse import urlparse, urlencode
from urllib.request import urlopen, Request
from urllib.error import HTTPError

Python 2 and 3: easiest option
from future.standard_library import install_aliases
install_aliases()

from urllib.parse import urlparse, urlencode
from urllib.request import urlopen, Request
from urllib.error import HTTPError

Python 2 and 3: alternative 2
from future.standard_library import hooks

with hooks():
 from urllib.parse import urlparse, urlencode
 from urllib.request import urlopen, Request
 from urllib.error import HTTPError

Python 2 and 3: alternative 3
from future.moves.urllib.parse import urlparse, urlencode
from future.moves.urllib.request import urlopen, Request
from future.moves.urllib.error import HTTPError
or
from six.moves.urllib.parse import urlparse, urlencode
from six.moves.urllib.request import urlopen
from six.moves.urllib.error import HTTPError

Python 2 and 3: alternative 4
try:
 from urllib.parse import urlparse, urlencode
 from urllib.request import urlopen, Request
 from urllib.error import HTTPError
except ImportError:
 from urlparse import urlparse
 from urllib import urlencode
 from urllib2 import urlopen, Request, HTTPError

Tkinter

Python 2 only:
import Tkinter
import Dialog
import FileDialog
import ScrolledText
import SimpleDialog
import Tix
import Tkconstants
import Tkdnd
import tkColorChooser
import tkCommonDialog
import tkFileDialog
import tkFont
import tkMessageBox
import tkSimpleDialog
import ttk

Python 2 and 3 (after ``pip install future``):
import tkinter
import tkinter.dialog
import tkinter.filedialog
import tkinter.scrolledtext
import tkinter.simpledialog
import tkinter.tix
import tkinter.constants
import tkinter.dnd
import tkinter.colorchooser
import tkinter.commondialog
import tkinter.filedialog
import tkinter.font
import tkinter.messagebox
import tkinter.simpledialog
import tkinter.ttk

socketserver

Python 2 only:
import SocketServer

Python 2 and 3 (after ``pip install future``):
import socketserver

copy_reg, copyreg

Python 2 only:
import copy_reg

Python 2 and 3 (after ``pip install future``):
import copyreg

configparser

Python 2 only:
from ConfigParser import ConfigParser

Python 2 and 3 (after ``pip install configparser``):
from configparser import ConfigParser

queue

Python 2 only:
from Queue import Queue, heapq, deque

Python 2 and 3 (after ``pip install future``):
from queue import Queue, heapq, deque

repr, reprlib

Python 2 only:
from repr import aRepr, repr

Python 2 and 3 (after ``pip install future``):
from reprlib import aRepr, repr

UserDict, UserList, UserString

Python 2 only:
from UserDict import UserDict
from UserList import UserList
from UserString import UserString

Python 3 only:
from collections import UserDict, UserList, UserString

Python 2 and 3: alternative 1
from future.moves.collections import UserDict, UserList, UserString

Python 2 and 3: alternative 2
from six.moves import UserDict, UserList, UserString

Python 2 and 3: alternative 3
from future.standard_library import install_aliases
install_aliases()
from collections import UserDict, UserList, UserString

itertools: filterfalse, zip_longest

Python 2 only:
from itertools import ifilterfalse, izip_longest

Python 3 only:
from itertools import filterfalse, zip_longest

Python 2 and 3: alternative 1
from future.moves.itertools import filterfalse, zip_longest

Python 2 and 3: alternative 2
from six.moves import filterfalse, zip_longest

Python 2 and 3: alternative 3
from future.standard_library import install_aliases
install_aliases()
from itertools import filterfalse, zip_longest

Imports

__future__ imports

To write a Python 2/3 compatible codebase, the first step is to add this line
to the top of each module:

from __future__ import absolute_import, division, print_function

For guidelines about whether to import unicode_literals too, see below
(Should I import unicode_literals?).

For more information about the __future__ imports, which are a
standard feature of Python, see the following docs:

	absolute_import: PEP 328: Imports: Multi-Line and Absolute/Relative [http://www.python.org/dev/peps/pep-0328]

	division: PEP 238: Changing the Division Operator [http://www.python.org/dev/peps/pep-0238]

	print_function: PEP 3105: Make print a function [http://www.python.org/dev/peps/pep-3105]

	unicode_literals: PEP 3112: Bytes literals in Python 3000 [http://www.python.org/dev/peps/pep-3112]

These are all available in Python 2.7 and up, and enabled by default in Python 3.x.

Imports of builtins

Implicit imports

If you don’t mind namespace pollution, the easiest way to provide Py2/3
compatibility for new code using future is to include the following imports
at the top of every module:

from builtins import *

On Python 3, this has no effect. (It shadows builtins with globals of the same
names.)

On Python 2, this import line shadows 18 builtins (listed below) to
provide their Python 3 semantics.

Explicit imports

Explicit forms of the imports are often preferred and are necessary for using
certain automated code-analysis tools.

The complete set of imports of builtins from future is:

from builtins import (ascii, bytes, chr, dict, filter, hex, input,
 int, map, next, oct, open, pow, range, round,
 str, super, zip)

These are also available under the future.builtins namespace for backward compatibility.

Importing only some of the builtins is cleaner but increases the risk of
introducing Py2/3 portability bugs as your code evolves over time. For example,
be aware of forgetting to import input, which could expose a security
vulnerability on Python 2 if Python 3’s semantics are expected.

The internal API is currently as follows:

from future.types import bytes, dict, int, range, str
from future.builtins.misc import (ascii, chr, hex, input, next,
 oct, open, pow, round, super)
from future.builtins.iterators import filter, map, zip

Please note that this internal API is evolving and may not be stable between
different versions of future. To understand the details of the backported
builtins on Python 2, see the docs for these modules.

For more information on what the backported types provide, see What else you need to know.

Obsolete Python 2 builtins

Twelve Python 2 builtins have been removed from Python 3. To aid with
porting code to Python 3 module by module, you can use the following
import to cause a NameError exception to be raised on Python 2 when any
of the obsolete builtins is used, just as would occur on Python 3:

from future.builtins.disabled import *

This is equivalent to:

from future.builtins.disabled import (apply, cmp, coerce, execfile,
 file, long, raw_input, reduce, reload,
 unicode, xrange, StandardError)

Running futurize over code that uses these Python 2 builtins does not
import the disabled versions; instead, it replaces them with their
equivalent Python 3 forms and then adds future imports to resurrect
Python 2 support, as described in Stage 2: Py3-style code with wrappers for Py2.

Standard library imports

future supports the standard library reorganization (PEP 3108) through
several mechanisms.

Direct imports

As of version 0.14, the future package comes with top-level packages for
Python 2.x that provide access to the reorganized standard library modules
under their Python 3.x names.

Direct imports are the preferred mechanism for accesing the renamed standard
library modules in Python 2/3 compatible code. For example, the following clean
Python 3 code runs unchanged on Python 2 after installing future:

>>> # Alias for future.builtins on Py2:
>>> from builtins import str, open, range, dict

>>> # Top-level packages with Py3 names provided on Py2:
>>> import queue
>>> import tkinter.dialog
>>> etc.

Notice that this code actually runs on Python 3 without the presence of the
future package.

Of the 44 modules that were refactored with PEP 3108 (standard library
reorganization), 29 are supported with direct imports in the above manner. The
complete list is here:

Renamed modules:

import builtins

import copyreg

import html
import html.entities
import html.parser

import http.client
import http.cookies
import http.cookiejar
import http.server

import queue

import reprlib

import socketserver

from tkinter import colorchooser
from tkinter import commondialog
from tkinter import constants
from tkinter import dialog
from tkinter import dnd
from tkinter import filedialog
from tkinter import font
from tkinter import messagebox
from tkinter import scrolledtext
from tkinter import simpledialog
from tkinter import tix
from tkinter import ttk

import winreg # Windows only

import xmlrpc.client
import xmlrpc.server

import _dummy_thread
import _markupbase
import _thread

Note that, as of v0.16.0, python-future no longer includes an alias for the
configparser module because a full backport exists (see https://pypi.org/project/configparser/).

Aliased imports

The following 14 modules were refactored or extended from Python 2.7 to 3.x
but were neither renamed in Py3.x nor were the new APIs backported to Py2.x.
This precludes compatibility interfaces that work out-of-the-box. Instead, the
future package makes the Python 3.x APIs available on Python 2.x as
follows:

from future.standard_library import install_aliases
install_aliases()

from collections import UserDict, UserList, UserString

import urllib.parse
import urllib.request
import urllib.response
import urllib.robotparser
import urllib.error

import dbm
import dbm.dumb
import dbm.gnu # requires Python dbm support
import dbm.ndbm # requires Python dbm support

from itertools import filterfalse, zip_longest

from subprocess import getoutput, getstatusoutput

from sys import intern

import test.support

The newly exposed urllib submodules are backports of those from Py3.x.
This means, for example, that urllib.parse.unquote() now exists and takes
an optional encoding argument on Py2.x as it does on Py3.x.

Limitation: Note that the http-based backports do not currently support
HTTPS (as of 2015-09-11) because the SSL support changed considerably in Python
3.x. If you need HTTPS support, please use this idiom for now:

from future.moves.urllib.request import urlopen

Backports also exist of the following features from Python 3.4:

	math.ceil returns an int on Py3

	collections.ChainMap (for 2.7)

	reprlib.recursive_repr (for 2.7)

These can then be imported on Python 2.7+ as follows:

from future.standard_library import install_aliases
install_aliases()

from math import ceil # now returns an int
from collections import ChainMap
from reprlib import recursive_repr

External standard-library backports

Backports of the following modules from the Python 3.x standard library are
available independently of the python-future project:

import enum # pip install enum34
import singledispatch # pip install singledispatch
import pathlib # pip install pathlib

A few modules from Python 3.4 are also available in the backports
package namespace after pip install backports.lzma etc.:

from backports import lzma
from backports import functools_lru_cache as lru_cache

Included full backports

Alpha-quality full backports of the following modules from Python 3.3’s
standard library to Python 2.x are also available in future.backports:

http.client
http.server
html.entities
html.parser
urllib
xmlrpc.client
xmlrpc.server

The goal for these modules, unlike the modules in the future.moves package
or top-level namespace, is to backport new functionality introduced in Python
3.3.

If you need the full backport of one of these packages, please open an issue here [https://github.com/PythonCharmers/python-future].

Using Python 2-only dependencies on Python 3

The past module provides an experimental translation package to help
with importing and using old Python 2 modules in a Python 3 environment.

This is implemented using PEP 414 import hooks together with fixers from
lib2to3 and libfuturize (included with python-future) that
attempt to automatically translate Python 2 code to Python 3 code with equivalent
semantics upon import.

Note This feature is still in alpha and needs further development to support a
full range of real-world Python 2 modules. Also be aware that the API for
this package might change considerably in later versions.

Here is how to use it:

$ pip3 install plotrique==0.2.5-7 --no-compile # to ignore SyntaxErrors
$ python3

Then pass in a whitelist of module name prefixes to the
past.translation.autotranslate() function. Example:

>>> from past.translation import autotranslate
>>> autotranslate(['plotrique'])
>>> import plotrique

Here is another example:

>>> from past.translation import install_hooks, remove_hooks
>>> install_hooks(['mypy2module'])
>>> import mypy2module
>>> remove_hooks()

This will translate, import and run Python 2 code such as the following:

File: mypy2module.py

Print statements are translated transparently to functions:
print 'Hello from a print statement'

xrange() is translated to Py3's range():
total = 0
for i in xrange(10):
 total += i
print 'Total is: %d' % total

Dictionary methods like .keys() and .items() are supported and
return lists as on Python 2:
d = {'a': 1, 'b': 2}
assert d.keys() == ['a', 'b']
assert isinstance(d.items(), list)

Functions like range, reduce, map, filter also return lists:
assert isinstance(range(10), list)

The exec statement is supported:
exec 'total += 1'
print 'Total is now: %d' % total

Long integers are supported:
k = 1234983424324L
print 'k + 1 = %d' % k

Most renamed standard library modules are supported:
import ConfigParser
import HTMLParser
import urllib

The attributes of the module are then accessible normally from Python 3.
For example:

This Python 3 code works
>>> type(mypy2module.d)
builtins.dict

This is a standard Python 3 data type, so, when called from Python 3 code,
keys() returns a view, not a list:

>>> type(mypy2module.d.keys())
builtins.dict_keys

	It currently requires a newline at the end of the module or it throws a
ParseError.

	This only works with pure-Python modules. C extension modules and Cython code
are not supported.

	The biggest hurdle to automatic translation is likely to be ambiguity
about byte-strings and text (unicode strings) in the Python 2 code. If the
past.autotranslate feature fails because of this, you could try
running futurize over the code and adding a b'' or u'' prefix to
the relevant string literals. To convert between byte-strings and text (unicode
strings), add an .encode or .decode method call. If this succeeds,
please push your patches upstream to the package maintainers.

	Otherwise, the source translation feature offered by the past.translation
package has similar limitations to the futurize script (see
Known limitations). Help developing and testing this feature further
would be particularly welcome.

Please report any bugs you find on the python-future bug tracker [https://github.com/PythonCharmers/python-future/].

Should I import unicode_literals?

The future package can be used with or without unicode_literals
imports.

In general, it is more compelling to use unicode_literals when
back-porting new or existing Python 3 code to Python 2/3 than when porting
existing Python 2 code to 2/3. In the latter case, explicitly marking up all
unicode string literals with u'' prefixes would help to avoid
unintentionally changing the existing Python 2 API. However, if changing the
existing Python 2 API is not a concern, using unicode_literals may speed up
the porting process.

This section summarizes the benefits and drawbacks of using
unicode_literals. To avoid confusion, we recommend using
unicode_literals everywhere across a code-base or not at all, instead of
turning on for only some modules.

Benefits

	String literals are unicode on Python 3. Making them unicode on Python 2
leads to more consistency of your string types across the two
runtimes. This can make it easier to understand and debug your code.

	Code without u'' prefixes is cleaner, one of the claimed advantages
of Python 3. Even though some unicode strings would require a function
call to invert them to native strings for some Python 2 APIs (see
Standard library incompatibilities), the incidence of these function calls
would usually be much lower than the incidence of u'' prefixes for text
strings in the absence of unicode_literals.

	The diff when porting to a Python 2/3-compatible codebase may be smaller,
less noisy, and easier to review with unicode_literals than if an
explicit u'' prefix is added to every unadorned string literal.

	If support for Python 3.2 is required (e.g. for Ubuntu 12.04 LTS or
Debian wheezy), u'' prefixes are a SyntaxError, making
unicode_literals the only option for a Python 2/3 compatible
codebase. [However, note that future doesn’t support Python 3.0-3.2.]

Drawbacks

	Adding unicode_literals to a module amounts to a “global flag day” for
that module, changing the data types of all strings in the module at once.
Cautious developers may prefer an incremental approach. (See
here [http://lwn.net/Articles/165039/] for an excellent article
describing the superiority of an incremental patch-set in the the case
of the Linux kernel.)

	Changing to unicode_literals will likely introduce regressions on
Python 2 that require an initial investment of time to find and fix. The
APIs may be changed in subtle ways that are not immediately obvious.

An example on Python 2:

Module: mypaths.py

...
def unix_style_path(path):
 return path.replace('\\', '/')
...

User code:

>>> path1 = '\\Users\\Ed'
>>> unix_style_path(path1)
'/Users/ed'

On Python 2, adding a unicode_literals import to mypaths.py would
change the return type of the unix_style_path function from str to
unicode in the user code, which is difficult to anticipate and probably
unintended.

The counter-argument is that this code is broken, in a portability
sense; we see this from Python 3 raising a TypeError upon passing the
function a byte-string. The code needs to be changed to make explicit
whether the path argument is to be a byte string or a unicode string.

	With unicode_literals in effect, there is no way to specify a native
string literal (str type on both platforms). This can be worked around as follows:

>>> from __future__ import unicode_literals
>>> ...
>>> from future.utils import bytes_to_native_str as n

>>> s = n(b'ABCD')
>>> s
'ABCD' # on both Py2 and Py3

although this incurs a performance penalty (a function call and, on Py3,
a decode method call.)

This is a little awkward because various Python library APIs (standard
and non-standard) require a native string to be passed on both Py2
and Py3. (See Standard library incompatibilities for some examples. WSGI
dictionaries are another.)

	If a codebase already explicitly marks up all text with u'' prefixes,
and if support for Python versions 3.0-3.2 can be dropped, then
removing the existing u'' prefixes and replacing these with
unicode_literals imports (the porting approach Django used) would
introduce more noise into the patch and make it more difficult to review.
However, note that the futurize script takes advantage of PEP 414 and
does not remove explicit u'' prefixes that already exist.

	Turning on unicode_literals converts even docstrings to unicode, but
Pydoc breaks with unicode docstrings containing non-ASCII characters for
Python versions < 2.7.7. (Fix
committed [http://bugs.python.org/issue1065986#msg207403] in Jan 2014.):

>>> def f():
... u"Author: Martin von Löwis"

>>> help(f)

/Users/schofield/Install/anaconda/python.app/Contents/lib/python2.7/pydoc.pyc in pipepager(text, cmd)
 1376 pipe = os.popen(cmd, 'w')
 1377 try:
-> 1378 pipe.write(text)
 1379 pipe.close()
 1380 except IOError:

UnicodeEncodeError: 'ascii' codec can't encode character u'\xf6' in position 71: ordinal not in range(128)

See this Stack Overflow thread [http://stackoverflow.com/questions/809796/any-gotchas-using-unicode-literals-in-python-2-6]
for other gotchas.

Others’ perspectives

Django recommends importing unicode_literals as its top porting tip [https://docs.djangoproject.com/en/1.11/topics/python3/#unicode-literals] for
migrating Django extension modules to Python 3. The following quote [https://groups.google.com/forum/#!topic/django-developers/2ddIWdicbNY] is
from Aymeric Augustin on 23 August 2012 regarding why he chose
unicode_literals for the port of Django to a Python 2/3-compatible
codebase.:

“… I’d like to explain why this PEP [PEP 414, which allows explicit
u'' prefixes for unicode literals on Python 3.3+] is at odds with
the porting philosophy I’ve applied to Django, and why I would have
vetoed taking advantage of it.

“I believe that aiming for a Python 2 codebase with Python 3
compatibility hacks is a counter-productive way to port a project. You
end up with all the drawbacks of Python 2 (including the legacy u
prefixes) and none of the advantages Python 3 (especially the sane
string handling).

“Working to write Python 3 code, with legacy compatibility for Python
2, is much more rewarding. Of course it takes more effort, but the
results are much cleaner and much more maintainable. It’s really about
looking towards the future or towards the past.

“I understand the reasons why PEP 414 was proposed and why it was
accepted. It makes sense for legacy software that is minimally
maintained. I hope nobody puts Django in this category!”

“There are so many subtle problems that unicode_literals causes.
For instance lots of people accidentally introduce unicode into
filenames and that seems to work, until they are using it on a system
where there are unicode characters in the filesystem path.”

—Armin Ronacher

“+1 from me for avoiding the unicode_literals future, as it can have
very strange side effects in Python 2…. This is one of the key
reasons I backed Armin’s PEP 414.”

—Nick Coghlan

“Yeah, one of the nuisances of the WSGI spec is that the header values
IIRC are the str or StringType on both py2 and py3. With
unicode_literals this causes hard-to-spot bugs, as some WSGI servers
might be more tolerant than others, but usually using unicode in python
2 for WSGI headers will cause the response to fail.”

—Antti Haapala

Next steps

See What else you need to know.

What else you need to know

The following points are important to know about when writing Python 2/3
compatible code.

bytes

Handling bytes consistently and correctly has traditionally been one
of the most difficult tasks in writing a Py2/3 compatible codebase. This
is because the Python 2 bytes [https://docs.python.org/3/library/stdtypes.html#bytes] object is simply an alias for
Python 2’s str [https://docs.python.org/3/library/stdtypes.html#str], rather than a true implementation of the Python
3 bytes [https://docs.python.org/3/library/stdtypes.html#bytes] object, which is substantially different.

future contains a backport of the bytes object from Python 3
which passes most of the Python 3 tests for bytes. (See
tests/test_future/test_bytes.py in the source tree.) You can use it as
follows:

>>> from builtins import bytes
>>> b = bytes(b'ABCD')

On Py3, this is simply the builtin bytes [https://docs.python.org/3/library/stdtypes.html#bytes] object. On Py2, this
object is a subclass of Python 2’s str [https://docs.python.org/3/library/stdtypes.html#str] that enforces the same
strict separation of unicode strings and byte strings as Python 3’s
bytes [https://docs.python.org/3/library/stdtypes.html#bytes] object:

>>> b + u'EFGH' # TypeError
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: argument can't be unicode string

>>> bytes(b',').join([u'Fred', u'Bill'])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: sequence item 0: expected bytes, found unicode string

>>> b == u'ABCD'
False

>>> b < u'abc'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unorderable types: bytes() and <type 'unicode'>

In most other ways, these bytes [https://docs.python.org/3/library/stdtypes.html#bytes] objects have identical
behaviours to Python 3’s bytes [https://docs.python.org/3/library/stdtypes.html#bytes]:

b = bytes(b'ABCD')
assert list(b) == [65, 66, 67, 68]
assert repr(b) == "b'ABCD'"
assert b.split(b'B') == [b'A', b'CD']

Currently the easiest way to ensure identical behaviour of byte-strings
in a Py2/3 codebase is to wrap all byte-string literals b'...' in a
bytes() call as follows:

from builtins import bytes

...

b = bytes(b'This is my bytestring')

...

This is not perfect, but it is superior to manually debugging and fixing
code incompatibilities caused by the many differences between Py3 bytes
and Py2 strings.

The bytes [https://docs.python.org/3/library/stdtypes.html#bytes] type from builtins [https://docs.python.org/3/library/builtins.html#module-builtins] also provides support for the
surrogateescape error handler on Python 2.x. Here is an example that works
identically on Python 2.x and 3.x:

>>> from builtins import bytes
>>> b = bytes(b'\xff')
>>> b.decode('utf-8', 'surrogateescape')
'\udcc3'

This feature is in alpha. Please leave feedback here [https://github.com/PythonCharmers/python-future/issues] about whether this
works for you.

str

The str [https://docs.python.org/3/library/stdtypes.html#str] object in Python 3 is quite similar but not identical to the
Python 2 unicode object.

The major difference is the stricter type-checking of Py3’s str that
enforces a distinction between unicode strings and byte-strings, such as when
comparing, concatenating, joining, or replacing parts of strings.

There are also other differences, such as the repr of unicode strings in
Py2 having a u'...' prefix, versus simply '...', and the removal of
the str.decode() method in Py3.

future contains a newstr type that is a backport of the
str object from Python 3. This inherits from the Python 2
unicode class but has customizations to improve compatibility with
Python 3’s str [https://docs.python.org/3/library/stdtypes.html#str] object. You can use it as follows:

>>> from __future__ import unicode_literals
>>> from builtins import str

On Py2, this gives us:

>>> str
future.types.newstr.newstr

(On Py3, it is simply the usual builtin str [https://docs.python.org/3/library/stdtypes.html#str] object.)

Then, for example, the following code has the same effect on Py2 as on Py3:

>>> s = str(u'ABCD')
>>> assert s != b'ABCD'
>>> assert isinstance(s.encode('utf-8'), bytes)
>>> assert isinstance(b.decode('utf-8'), str)

These raise TypeErrors:

>>> bytes(b'B') in s
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'in <string>' requires string as left operand, not <type 'str'>

>>> s.find(bytes(b'A'))
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: argument can't be <type 'str'>

Various other operations that mix strings and bytes or other types are
permitted on Py2 with the newstr class even though they
are illegal with Python 3. For example:

>>> s2 = b'/' + str('ABCD')
>>> s2
'/ABCD'
>>> type(s2)
future.types.newstr.newstr

This is allowed for compatibility with parts of the Python 2 standard
library and various third-party libraries that mix byte-strings and unicode
strings loosely. One example is os.path.join on Python 2, which
attempts to add the byte-string b'/' to its arguments, whether or not
they are unicode. (See posixpath.py.) Another example is the
escape() function in Django 1.4’s django.utils.html.

In most other ways, these builtins.str objects on Py2 have the
same behaviours as Python 3’s str [https://docs.python.org/3/library/stdtypes.html#str]:

>>> s = str('ABCD')
>>> assert repr(s) == 'ABCD' # consistent repr with Py3 (no u prefix)
>>> assert list(s) == ['A', 'B', 'C', 'D']
>>> assert s.split('B') == ['A', 'CD']

The str [https://docs.python.org/3/library/stdtypes.html#str] type from builtins [https://docs.python.org/3/library/builtins.html#module-builtins] also provides support for the
surrogateescape error handler on Python 2.x. Here is an example that works
identically on Python 2.x and 3.x:

>>> from builtins import str
>>> s = str(u'\udcff')
>>> s.encode('utf-8', 'surrogateescape')
b'\xff'

This feature is in alpha. Please leave feedback here [https://github.com/PythonCharmers/python-future/issues] about whether this
works for you.

dict

Python 3 dictionaries have .keys(), .values(), and .items()
methods which return memory-efficient set-like iterator objects, not lists.
(See PEP 3106 [http://www.python.org/dev/peps/pep-3106/].)

If your dictionaries are small, performance is not critical, and you don’t need
the set-like behaviour of iterator objects from Python 3, you can of course
stick with standard Python 3 code in your Py2/3 compatible codebase:

Assuming d is a native dict ...

for key in d:
 # code here

for item in d.items():
 # code here

for value in d.values():
 # code here

In this case there will be memory overhead of list creation on Py2 for each
call to items, values or keys.

For improved efficiency, future.builtins (aliased to builtins) provides
a Python 2 dict subclass whose keys(), values(), and
items() methods return iterators on all versions of Python >= 2.7. On
Python 2.7, these iterators also have the same set-like view behaviour as
dictionaries in Python 3. This can streamline code that iterates over large
dictionaries. For example:

from __future__ import print_function
from builtins import dict, range

Memory-efficient construction:
d = dict((i, i**2) for i in range(10**7))

assert not isinstance(d.items(), list)

Because items() is memory-efficient, so is this:
d2 = dict((v, k) for (k, v) in d.items())

As usual, on Python 3 dict imported from either builtins or
future.builtins is just the built-in dict class.

Memory-efficiency and alternatives

If you already have large native dictionaries, the downside to wrapping them in
a dict call is that memory is copied (on both Py3 and on Py2). For
example:

This allocates and then frees a large amount of temporary memory:
d = dict({i: i**2 for i in range(10**7)})

If dictionary methods like values and items are called only once, this
obviously negates the memory benefits offered by the overridden methods through
not creating temporary lists.

The memory-efficient (and CPU-efficient) alternatives are:

	to construct a dictionary from an iterator. The above line could use a
generator like this:

d = dict((i, i**2) for i in range(10**7))

	to construct an empty dictionary with a dict() call using
builtins.dict (rather than {}) and then update it;

	to use the viewitems etc. functions from future.utils, passing in
regular dictionaries:

from future.utils import viewkeys, viewvalues, viewitems

for (key, value) in viewitems(hugedictionary):
 # some code here

Set intersection:
d = {i**2: i for i in range(1000)}
both = viewkeys(d) & set(range(0, 1000, 7))

Set union:
both = viewvalues(d1) | viewvalues(d2)

For compatibility, the functions iteritems etc. are also available in
future.utils. These are equivalent to the functions of the same names in
six, which is equivalent to calling the iteritems etc. methods on
Python 2, or to calling items etc. on Python 3.

int

Python 3’s int type is very similar to Python 2’s long, except
for the representation (which omits the L suffix in Python 2). Python
2’s usual (short) integers have been removed from Python 3, as has the
long builtin name.

Python 3:

>>> 2**64
18446744073709551616

Python 2:

>>> 2**64
18446744073709551616L

future includes a backport of Python 3’s int that
is a subclass of Python 2’s long with the same representation
behaviour as Python 3’s int. To ensure an integer is long compatibly with
both Py3 and Py2, cast it like this:

>>> from builtins import int
>>> must_be_a_long_integer = int(1234)

The backported int object helps with writing doctests and simplifies code
that deals with long and int as special cases on Py2. An example is the
following code from xlwt-future (called by the xlwt.antlr.BitSet class)
for writing out Excel .xls spreadsheets. With future, the code is:

from builtins import int

def longify(data):
 """
 Turns data (an int or long, or a list of ints or longs) into a
 list of longs.
 """
 if not data:
 return [int(0)]
 if not isinstance(data, list):
 return [int(data)]
 return list(map(int, data))

Without future (or with future < 0.7), this might be:

def longify(data):
 """
 Turns data (an int or long, or a list of ints or longs) into a
 list of longs.
 """
 if not data:
 if PY3:
 return [0]
 else:
 return [long(0)]
 if not isinstance(data,list):
 if PY3:
 return [int(data)]
 else:
 return [long(data)]
 if PY3:
 return list(map(int, data)) # same as returning data, but with up-front typechecking
 else:
 return list(map(long, data))

isinstance

The following tests all pass on Python 3:

>>> assert isinstance(2**62, int)
>>> assert isinstance(2**63, int)
>>> assert isinstance(b'my byte-string', bytes)
>>> assert isinstance(u'unicode string 1', str)
>>> assert isinstance('unicode string 2', str)

However, two of these normally fail on Python 2:

>>> assert isinstance(2**63, int)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AssertionError

>>> assert isinstance(u'my unicode string', str)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AssertionError

And if this import is in effect on Python 2:

>>> from __future__ import unicode_literals

then the fifth test fails too:

>>> assert isinstance('unicode string 2', str)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AssertionError

After importing the builtins from future, all these tests pass on
Python 2 as on Python 3:

>>> from builtins import bytes, int, str

>>> assert isinstance(10, int)
>>> assert isinstance(10**100, int)
>>> assert isinstance(b'my byte-string', bytes)
>>> assert isinstance(u'unicode string 1', str)

However, note that the last test requires that unicode_literals be imported to succeed.:

>>> from __future__ import unicode_literals
>>> assert isinstance('unicode string 2', str)

This works because the backported types int, bytes and str
(and others) have metaclasses that override __instancecheck__. See PEP 3119 [http://www.python.org/dev/peps/pep-3119/#overloading-isinstance-and-issubclass]
for details.

Passing data to/from Python 2 libraries

If you are passing any of the backported types (bytes, int, dict,
``str) into brittle library code that performs type-checks using type(),
rather than isinstance(), or requires that you pass Python 2’s native types
(rather than subclasses) for some other reason, it may be necessary to upcast
the types from future to their native superclasses on Py2.

The native function in future.utils is provided for this. Here is how
to use it. (The output showing is from Py2):

>>> from builtins import int, bytes, str
>>> from future.utils import native

>>> a = int(10**20) # Py3-like long int
>>> a
100000000000000000000
>>> type(a)
future.types.newint.newint
>>> native(a)
100000000000000000000L
>>> type(native(a))
long

>>> b = bytes(b'ABC')
>>> type(b)
future.types.newbytes.newbytes
>>> native(b)
'ABC'
>>> type(native(b))
str

>>> s = str(u'ABC')
>>> type(s)
future.types.newstr.newstr
>>> native(s)
u'ABC'
>>> type(native(s))
unicode

On Py3, the native() function is a no-op.

Native string type

Some library code, include standard library code like the array.array()
constructor, require native strings on Python 2 and Python 3. This means that
there is no simple way to pass the appropriate string type when the
unicode_literals import from __future__ is in effect.

The objects native_str and native_bytes are available in
future.utils for this case. These are equivalent to the str and
bytes objects in __builtin__ on Python 2 or in builtins on Python 3.

The functions native_str_to_bytes and bytes_to_native_str are also
available for more explicit conversions.

open()

The Python 3 builtin open() [https://docs.python.org/3/library/functions.html#open] function for opening files returns file
contents as (unicode) strings unless the binary (b) flag is passed, as in:

open(filename, 'rb')

in which case its methods like read() return Py3 bytes [https://docs.python.org/3/library/stdtypes.html#bytes] objects.

On Py2 with future installed, the builtins [https://docs.python.org/3/library/builtins.html#module-builtins] module provides an
open function that is mostly compatible with that on Python 3 (e.g. it
offers keyword arguments like encoding). This maps to the open backport
available in the standard library io [https://docs.python.org/3/library/io.html#module-io] module on Py2.7.

One difference to be aware of between the Python 3 open and
future.builtins.open on Python 2 is that the return types of methods such
as read() from the file object that open returns are not
automatically cast from native bytes or unicode strings on Python 2 to the
corresponding future.builtins.bytes or future.builtins.str types. If you
need the returned data to behave the exactly same way on Py2 as on Py3, you can
cast it explicitly as follows:

from __future__ import unicode_literals
from builtins import open, bytes

data = open('image.png', 'rb').read()
On Py2, data is a standard 8-bit str with loose Unicode coercion.
data + u'' would likely raise a UnicodeDecodeError

data = bytes(data)
Now it behaves like a Py3 bytes object...

assert data[:4] == b'\x89PNG'
assert data[4] == 13 # integer
Raises TypeError:
data + u''

Custom __str__ methods

If you define a custom __str__ method for any of your classes,
functions like print() expect __str__ on Py2 to return a byte
string, whereas on Py3 they expect a (unicode) string.

Use the following decorator to map the __str__ to __unicode__ on
Py2 and define __str__ to encode it as utf-8:

from future.utils import python_2_unicode_compatible

@python_2_unicode_compatible
class MyClass(object):
 def __str__(self):
 return u'Unicode string: \u5b54\u5b50'
a = MyClass()

This then prints the name of a Chinese philosopher:
print(a)

This decorator is identical to the decorator of the same name in
django.utils.encoding.

This decorator is a no-op on Python 3.

Custom iterators

If you define your own iterators, there is an incompatibility in the method name
to retrieve the next item across Py3 and Py2. On Python 3 it is __next__,
whereas on Python 2 it is next.

The most elegant solution to this is to derive your custom iterator class from
builtins.object and define a __next__ method as you normally
would on Python 3. On Python 2, object then refers to the
future.types.newobject base class, which provides a fallback next
method that calls your __next__. Use it as follows:

from builtins import object

class Upper(object):
 def __init__(self, iterable):
 self._iter = iter(iterable)
 def __next__(self): # Py3-style iterator interface
 return next(self._iter).upper()
 def __iter__(self):
 return self

itr = Upper('hello')
assert next(itr) == 'H'
assert next(itr) == 'E'
assert list(itr) == list('LLO')

You can use this approach unless you are defining a custom iterator as a
subclass of a base class defined elsewhere that does not derive from
newobject. In that case, you can provide compatibility across
Python 2 and Python 3 using the next function from future.builtins:

from builtins import next

from some_module import some_base_class

class Upper2(some_base_class):
 def __init__(self, iterable):
 self._iter = iter(iterable)
 def __next__(self): # Py3-style iterator interface
 return next(self._iter).upper()
 def __iter__(self):
 return self

itr2 = Upper2('hello')
assert next(itr2) == 'H'
assert next(itr2) == 'E'

next() also works with regular Python 2 iterators with a .next method:

itr3 = iter(['one', 'three', 'five'])
assert 'next' in dir(itr3)
assert next(itr3) == 'one'

This approach is feasible whenever your code calls the next() function
explicitly. If you consume the iterator implicitly in a for loop or
list() call or by some other means, the future.builtins.next function
will not help; the third assertion below would fail on Python 2:

itr2 = Upper2('hello')

assert next(itr2) == 'H'
assert next(itr2) == 'E'
assert list(itr2) == list('LLO') # fails because Py2 implicitly looks
 # for a ``next`` method.

Instead, you can use a decorator called implements_iterator from
future.utils to allow Py3-style iterators to work identically on Py2, even
if they don’t inherit from future.builtins.object. Use it as follows:

from future.utils import implements_iterator

Upper2 = implements_iterator(Upper2)

print(list(Upper2('hello')))
prints ['H', 'E', 'L', 'L', 'O']

This can of course also be used with the @ decorator syntax when defining
the iterator as follows:

@implements_iterator
class Upper2(some_base_class):
 def __init__(self, iterable):
 self._iter = iter(iterable)
 def __next__(self): # note the Py3 interface
 return next(self._iter).upper()
 def __iter__(self):
 return self

On Python 3, as usual, this decorator does nothing.

Binding a method to a class

Python 2 draws a distinction between bound and unbound methods, whereas
in Python 3 this distinction is gone: unbound methods have been removed
from the language. To bind a method to a class compatibly across Python
3 and Python 2, you can use the bind_method() helper function:

from future.utils import bind_method

class Greeter(object):
 pass

def greet(self, message):
 print(message)

bind_method(Greeter, 'greet', greet)

g = Greeter()
g.greet('Hi!')

On Python 3, calling bind_method(cls, name, func) is equivalent to
calling setattr(cls, name, func). On Python 2 it is equivalent to:

import types
setattr(cls, name, types.MethodType(func, None, cls))

Metaclasses

Python 3 and Python 2 syntax for metaclasses are incompatible.
future provides a function (from jinja2/_compat.py) called
with_metaclass() that can assist with specifying metaclasses
portably across Py3 and Py2. Use it like this:

from future.utils import with_metaclass

class BaseForm(object):
 pass

class FormType(type):
 pass

class Form(with_metaclass(FormType, BaseForm)):
 pass

Automatic conversion to Py2/3

The future source tree includes scripts called futurize and
pasteurize to aid in making Python 2 code or Python 3 code compatible with
both platforms (Py2/3) using the future module. These are based on
lib2to3 and use fixers from 2to3, 3to2, and python-modernize.

futurize passes Python 2 code through all the appropriate fixers to turn it
into valid Python 3 code, and then adds __future__ and future package
imports.

For conversions from Python 3 code to Py2/3, use the pasteurize script
instead. This converts Py3-only constructs (e.g. new metaclass syntax) and adds
__future__ and future imports to the top of each module.

In both cases, the result should be relatively clean Py3-style code that runs
mostly unchanged on both Python 2 and Python 3.

futurize: Py2 to Py2/3

The futurize script passes Python 2 code through all the appropriate fixers
to turn it into valid Python 3 code, and then adds __future__ and
future package imports to re-enable compatibility with Python 2.

For example, running futurize turns this Python 2 code:

import ConfigParser # Py2 module name

class Upper(object):
 def __init__(self, iterable):
 self._iter = iter(iterable)
 def next(self): # Py2-style iterator interface
 return next(self._iter).upper()
 def __iter__(self):
 return self

itr = Upper('hello')
print next(itr),
for letter in itr:
 print letter, # Py2-style print statement

into this code which runs on both Py2 and Py3:

from __future__ import print_function
from future import standard_library
standard_library.install_aliases()
from future.builtins import next
from future.builtins import object
import configparser # Py3-style import

class Upper(object):
 def __init__(self, iterable):
 self._iter = iter(iterable)
 def __next__(self): # Py3-style iterator interface
 return next(self._iter).upper()
 def __iter__(self):
 return self

itr = Upper('hello')
print(next(itr), end=' ') # Py3-style print function
for letter in itr:
 print(letter, end=' ')

To write out all the changes to your Python files that futurize suggests,
use the -w flag.

For complex projects, it is probably best to divide the porting into two stages.
Stage 1 is for “safe” changes that modernize the code but do not break Python
2.7 compatibility or introduce a dependency on the future package. Stage 2
is to complete the process.

Stage 1: “safe” fixes

Run the first stage of the conversion process with:

futurize --stage1 mypackage/*.py

or, if you are using zsh, recursively:

futurize --stage1 mypackage/**/*.py

This applies fixes that modernize Python 2 code without changing the effect of
the code. With luck, this will not introduce any bugs into the code, or will at
least be trivial to fix. The changes are those that bring the Python code
up-to-date without breaking Py2 compatibility. The resulting code will be
modern Python 2.7-compatible code plus __future__ imports from the
following set:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Only those __future__ imports deemed necessary will be added unless
the --all-imports command-line option is passed to futurize, in
which case they are all added.

The from __future__ import unicode_literals declaration is not added
unless the --unicode-literals flag is passed to futurize.

The changes include:

- except MyException, e:
+ except MyException as e:

- print >>stderr, "Blah"
+ from __future__ import print_function
+ print("Blah", stderr)

- class MyClass:
+ class MyClass(object):

- def next(self):
+ def __next__(self):

- if d.has_key(key):
+ if key in d:

Implicit relative imports fixed, e.g.:

- import mymodule
+ from __future__ import absolute_import
+ from . import mymodule

Stage 1 does not add any imports from the future package. The output of
stage 1 will probably not (yet) run on Python 3.

The goal for this stage is to create most of the diff for the entire
porting process, but without introducing any bugs. It should be uncontroversial
and safe to apply to every Python 2 package. The subsequent patches introducing
Python 3 compatibility should then be shorter and easier to review.

The complete set of fixers applied by futurize --stage1 is:

lib2to3.fixes.fix_apply
lib2to3.fixes.fix_except
lib2to3.fixes.fix_exec
lib2to3.fixes.fix_exitfunc
lib2to3.fixes.fix_funcattrs
lib2to3.fixes.fix_has_key
lib2to3.fixes.fix_idioms
lib2to3.fixes.fix_intern
lib2to3.fixes.fix_isinstance
lib2to3.fixes.fix_methodattrs
lib2to3.fixes.fix_ne
lib2to3.fixes.fix_numliterals
lib2to3.fixes.fix_paren
lib2to3.fixes.fix_reduce
lib2to3.fixes.fix_renames
lib2to3.fixes.fix_repr
lib2to3.fixes.fix_standarderror
lib2to3.fixes.fix_sys_exc
lib2to3.fixes.fix_throw
lib2to3.fixes.fix_tuple_params
lib2to3.fixes.fix_types
lib2to3.fixes.fix_ws_comma
lib2to3.fixes.fix_xreadlines
libfuturize.fixes.fix_absolute_import
libfuturize.fixes.fix_next_call
libfuturize.fixes.fix_print_with_import
libfuturize.fixes.fix_raise

The following fixers from lib2to3 are not applied:

lib2to3.fixes.fix_import

The fix_absolute_import fixer in libfuturize.fixes is applied instead of
lib2to3.fixes.fix_import. The new fixer both makes implicit relative
imports explicit and adds the declaration from __future__ import
absolute_import at the top of each relevant module.

lib2to3.fixes.fix_next

The fix_next_call fixer in libfuturize.fixes is applied instead of
fix_next in stage 1. The new fixer changes any obj.next() calls to
next(obj), which is Py2/3 compatible, but doesn’t change any next method
names to __next__, which would break Py2 compatibility.

fix_next is applied in stage 2.

lib2to3.fixes.fix_print

The fix_print_with_import fixer in libfuturize.fixes changes the code to
use print as a function and also adds from __future__ import
print_function to the top of modules using print().

In addition, it avoids adding an extra set of parentheses if these already
exist. So print(x) does not become print((x)).

lib2to3.fixes.fix_raise

This fixer translates code to use the Python 3-only with_traceback()
method on exceptions.

lib2to3.fixes.fix_set_literal

This converts set([1, 2, 3]) to {1, 2, 3}.

lib2to3.fixes.fix_ws_comma

This performs cosmetic changes. This is not applied by default because it
does not serve to improve Python 2/3 compatibility. (In some cases it may
also reduce readability: see issue #58.)

Stage 2: Py3-style code with wrappers for Py2

Run stage 2 of the conversion process with:

futurize --stage2 myfolder/*.py

This stage adds a dependency on the future package. The goal for stage 2 is
to make further mostly safe changes to the Python 2 code to use Python 3-style
code that then still runs on Python 2 with the help of the appropriate builtins
and utilities in future.

For example:

name = raw_input('What is your name?\n')

for k, v in d.iteritems():
 assert isinstance(v, basestring)

class MyClass(object):
 def __unicode__(self):
 return u'My object'
 def __str__(self):
 return unicode(self).encode('utf-8')

would be converted by Stage 2 to this code:

from builtins import input
from builtins import str
from future.utils import iteritems, python_2_unicode_compatible

name = input('What is your name?\n')

for k, v in iteritems(d):
 assert isinstance(v, (str, bytes))

@python_2_unicode_compatible
class MyClass(object):
 def __str__(self):
 return u'My object'

Stage 2 also renames standard-library imports to their Py3 names and adds these
two lines:

from future import standard_library
standard_library.install_aliases()

For example:

import ConfigParser

becomes:

from future import standard_library
standard_library.install_aliases()
import configparser

The complete list of fixers applied in Stage 2 is:

lib2to3.fixes.fix_dict
lib2to3.fixes.fix_filter
lib2to3.fixes.fix_getcwdu
lib2to3.fixes.fix_input
lib2to3.fixes.fix_itertools
lib2to3.fixes.fix_itertools_imports
lib2to3.fixes.fix_long
lib2to3.fixes.fix_map
lib2to3.fixes.fix_next
lib2to3.fixes.fix_nonzero
lib2to3.fixes.fix_operator
lib2to3.fixes.fix_raw_input
lib2to3.fixes.fix_zip

libfuturize.fixes.fix_basestring
libfuturize.fixes.fix_cmp
libfuturize.fixes.fix_division_safe
libfuturize.fixes.fix_execfile
libfuturize.fixes.fix_future_builtins
libfuturize.fixes.fix_future_standard_library
libfuturize.fixes.fix_future_standard_library_urllib
libfuturize.fixes.fix_metaclass
libpasteurize.fixes.fix_newstyle
libfuturize.fixes.fix_object
libfuturize.fixes.fix_unicode_keep_u
libfuturize.fixes.fix_xrange_with_import

Not applied:

lib2to3.fixes.fix_buffer # Perhaps not safe. Test this.
lib2to3.fixes.fix_callable # Not needed in Py3.2+
lib2to3.fixes.fix_execfile # Some problems: see issue #37.
 # We use the custom libfuturize.fixes.fix_execfile instead.
lib2to3.fixes.fix_future # Removing __future__ imports is bad for Py2 compatibility!
lib2to3.fixes.fix_imports # Called by libfuturize.fixes.fix_future_standard_library
lib2to3.fixes.fix_imports2 # We don't handle this yet (dbm)
lib2to3.fixes.fix_metaclass # Causes SyntaxError in Py2! Use the one from ``six`` instead
lib2to3.fixes.fix_unicode # Strips off the u'' prefix, which removes a potentially
 # helpful source of information for disambiguating
 # unicode/byte strings.
lib2to3.fixes.fix_urllib # Included in libfuturize.fix_future_standard_library_urllib
lib2to3.fixes.fix_xrange # Custom one because of a bug with Py3.3's lib2to3

Separating text from bytes

After applying stage 2, the recommended step is to decide which of your Python
2 strings represent text and which represent binary data and to prefix all
string literals with either b or u accordingly. Furthermore, to ensure
that these types behave similarly on Python 2 as on Python 3, also wrap
byte-strings or text in the bytes and str types from future. For
example:

from builtins import bytes, str
b = bytes(b'\x00ABCD')
s = str(u'This is normal text')

Any unadorned string literals will then represent native platform strings
(byte-strings on Py2, unicode strings on Py3).

An alternative is to pass the --unicode-literals flag:

$ futurize --unicode-literals mypython2script.py

After running this, all string literals that were not explicitly marked up as
b'' will mean text (Python 3 str or Python 2 unicode).

Post-conversion

After running futurize, we recommend first running your tests on Python 3 and making further code changes until they pass on Python 3.

The next step would be manually tweaking the code to re-enable Python 2
compatibility with the help of the future package. For example, you can add
the @python_2_unicode_compatible decorator to any classes that define custom
__str__ methods. See What else you need to know for more info.

futurize quick-start guide

How to convert Py2 code to Py2/3 code using futurize:

Step 0: setup

Step 0 goal: set up and see the tests passing on Python 2 and failing on Python 3.

	Clone the package from github/bitbucket. Optionally rename your repo to package-future. Examples: reportlab-future, paramiko-future, mezzanine-future.

	Create and activate a Python 2 conda environment or virtualenv. Install the package with python setup.py install and run its test suite on Py2.7 (e.g. python setup.py test or py.test)

	Optionally: if there is a .travis.yml file, add Python version 3.6 and remove any versions < 2.6.

	Install Python 3 with e.g. sudo apt-get install python3. On other platforms, an easy way is to use Miniconda [http://repo.continuum.io/miniconda/index.html]. Then e.g.:

conda create -n py36 python=3.6 pip

Step 1: modern Py2 code

The goal for this step is to modernize the Python 2 code without introducing any dependencies (on future or e.g. six) at this stage.

1a. Install future into the virtualenv using:

pip install future

1b. Run futurize --stage1 -w *.py subdir1/*.py subdir2/*.py. Note that with
recursive globbing in bash or zsh, you can apply stage 1 to all source files
recursively with:

futurize --stage1 -w .

1c. Commit all changes

1d. Re-run the test suite on Py2 and fix any errors.

See Stage 1: “safe” fixes for more info.

Example error

One relatively common error after conversion is:

Traceback (most recent call last):
 ...
 File "/home/user/Install/BleedingEdge/reportlab/tests/test_encrypt.py", line 19, in <module>
 from .test_pdfencryption import parsedoc
ValueError: Attempted relative import in non-package

If you get this error, try adding an empty __init__.py file in the package
directory. (In this example, in the tests/ directory.) If this doesn’t help,
and if this message appears for all tests, they must be invoked differently
(from the cmd line or e.g. setup.py). The way to run a module inside a
package on Python 3, or on Python 2 with absolute_import in effect, is:

python -m tests.test_platypus_xref

(For more info, see PEP 328 [http://www.python.org/dev/peps/pep-0328/] and
the PEP 8 [http://www.python.org/dev/peps/pep-0008/] section on absolute
imports.)

Step 2: working Py3 code that still supports Py2

The goal for this step is to get the tests passing first on Py3 and then on Py2
again with the help of the future package.

2a. Run:

futurize --stage2 myfolder1/*.py myfolder2/*.py

You can view the stage 2 changes to all Python source files recursively with:

futurize --stage2 .

To apply the changes, add the -w argument.

This stage makes further conversions needed to support both Python 2 and 3.
These will likely require imports from future on Py2 (and sometimes on Py3),
such as:

from future import standard_library
standard_library.install_aliases()
...
from builtins import bytes
from builtins import open
from future.utils import with_metaclass

Optionally, you can use the --unicode-literals flag to add this import to
the top of each module:

from __future__ import unicode_literals

All strings in the module would then be unicode on Py2 (as on Py3) unless
explicitly marked with a b'' prefix.

If you would like futurize to import all the changed builtins to have their
Python 3 semantics on Python 2, invoke it like this:

futurize --stage2 --all-imports myfolder/*.py

2b. Re-run your tests on Py3 now. Make changes until your tests pass on Python 3.

2c. Commit your changes! :)

2d. Now run your tests on Python 2 and notice the errors. Add wrappers from
future to re-enable Python 2 compatibility. See the
Cheat Sheet: Writing Python 2-3 compatible code cheat sheet and What else you need to know for more info.

After each change, re-run the tests on Py3 and Py2 to ensure they pass on both.

2e. You’re done! Celebrate! Push your code and announce to the world! Hashtags
#python3 #python-future.

pasteurize: Py3 to Py2/3

Running pasteurize -w mypy3module.py turns this Python 3 code:

import configparser
import copyreg

class Blah:
 pass
print('Hello', end=None)

into this code which runs on both Py2 and Py3:

from __future__ import print_function
from future import standard_library
standard_library.install_hooks()

import configparser
import copyreg

class Blah(object):
 pass
print('Hello', end=None)

Notice that both futurize and pasteurize create explicit new-style
classes that inherit from object on both Python versions, and both
refer to stdlib modules (as well as builtins) under their Py3 names.

Note also that the configparser module is a special case; there is a full
backport available on PyPI (https://pypi.org/project/configparser/), so, as
of v0.16.0, python-future no longer provides a configparser package
alias. To use the resulting code on Py2, install the configparser backport
with pip install configparser or by adding it to your requirements.txt
file.

pasteurize also handles the following Python 3 features:

	keyword-only arguments

	metaclasses (using with_metaclass())

	extended tuple unpacking (PEP 3132)

To handle function annotations (PEP 3107), see Function annotations.

Known limitations

futurize and pasteurize are useful to automate much of the
work of porting, particularly the boring repetitive text substitutions. They also
help to flag which parts of the code require attention.

Nevertheless, futurize and pasteurize are still incomplete and make
some mistakes, like 2to3, on which they are based. Please report bugs on
GitHub [https://github.com/PythonCharmers/python-future/]. Contributions to
the lib2to3-based fixers for futurize and pasteurize are
particularly welcome! Please see Contributing.

futurize doesn’t currently make the following change automatically:

	Strings containing \U produce a SyntaxError on Python 3. An example is:

s = 'C:\Users'.

Python 2 expands this to s = 'C:\\Users', but Python 3 requires a raw
prefix (r'...'). This also applies to multi-line strings (including
multi-line docstrings).

Also see the tests in future/tests/test_futurize.py marked
@expectedFailure or @skip for known limitations.

Frequently Asked Questions (FAQ)

Who is this for?

1. People with existing or new Python 3 codebases who wish to provide
ongoing Python 2.7 support easily and with little maintenance burden.

2. People who wish to ease and accelerate migration of their Python 2 codebases
to Python 3.4+, module by module, without giving up Python 2 compatibility.

Why upgrade to Python 3?

“Python 2 is the next COBOL.”

—Alex Gaynor, at PyCon AU 2013

Python 2.7 is the end of the Python 2 line. (See PEP 404 [http://www.python.org/peps/pep-0404/].) The language and standard
libraries are improving only in Python 3.x.

Python 3.x is a better language and better set of standard libraries than
Python 2.x in many ways. Python 3.x is cleaner, less warty, and easier to
learn than Python 2. It has better memory efficiency, easier Unicode handling,
and powerful new features like the asyncio [https://docs.python.org/3/library/asyncio.html] module.

Porting philosophy

Why write Python 3-style code?

Here are some quotes:

	“Django’s developers have found that attempting to write Python 3 code
that’s compatible with Python 2 is much more rewarding than the
opposite.” from the Django docs [https://docs.djangoproject.com/en/dev/topics/python3/].

	“Thanks to Python 3 being more strict about things than Python 2 (e.g.,
bytes vs. strings), the source translation [from Python 3 to 2] can be
easier and more straightforward than from Python 2 to 3. Plus it gives
you more direct experience developing in Python 3 which, since it is
the future of Python, is a good thing long-term.” from the official
guide “Porting Python 2 Code to Python 3” [http://docs.python.org/2/howto/pyporting.html] by Brett Cannon.

	“Developer energy should be reserved for addressing real technical
difficulties associated with the Python 3 transition (like
distinguishing their 8-bit text strings from their binary data). They
shouldn’t be punished with additional code changes …” from PEP 414 [http://www.python.org/dev/peps/pep-0414/] by Armin Ronacher and Nick
Coghlan.

Can’t I just roll my own Py2/3 compatibility layer?

Yes, but using python-future will probably be easier and lead to cleaner
code with fewer bugs.

Consider this quote:

“Duplication of effort is wasteful, and replacing the various
home-grown approaches with a standard feature usually ends up making
things more readable, and interoperable as well.”

—Guido van Rossum (blog post [http://www.artima.com/weblogs/viewpost.jsp?thread=86641])

future also includes various Py2/3 compatibility tools in
future.utils picked from large projects (including IPython,
Django, Jinja2, Pandas), which should reduce the burden on every project to
roll its own py3k compatibility wrapper module.

What inspired this project?

In our Python training courses, we at Python Charmers [http://pythoncharmers.com] faced a dilemma: teach people Python 3, which was
future-proof but not as useful to them today because of weaker 3rd-party
package support, or teach people Python 2, which was more useful today but
would require them to change their code and unlearn various habits soon. We
searched for ways to avoid polluting the world with more deprecated code, but
didn’t find a good way.

Also, in attempting to help with porting packages such as scikit-learn [http://scikit-learn.org] to Python 3, I (Ed) was dissatisfied with how much
code cruft was necessary to introduce to support Python 2 and 3 from a single
codebase (the preferred porting option). Since backward-compatibility with
Python 2 may be necessary for at least the next 5 years, one of the promised
benefits of Python 3 – cleaner code with fewer of Python 2’s warts – was
difficult to realize before in practice in a single codebase that supported
both platforms.

The goal is to accelerate the uptake of Python 3 and help the strong Python
community to remain united around a single version of the language.

Maturity

How well has it been tested?

future is used by several major projects, including mezzanine [http://mezzanine.jupo.org] and ObsPy [http://www.obspy.org]. It is also
currently being used to help with porting 800,000 lines of Python 2 code in
Sage [http://sagemath.org] to Python 2/3.

Currently python-future has over 1000 unit tests. Many of these are straight
from the Python 3.3 and 3.4 test suites.

In general, the future package itself is in good shape, whereas the
futurize script for automatic porting is imperfect; chances are it will
require some manual cleanup afterwards. The past package also needs to be
expanded.

Is the API stable?

Not yet; future is still in beta. Where possible, we will try not to break
anything which was documented and used to work. After version 1.0 is released,
the API will not change in backward-incompatible ways until a hypothetical
version 2.0.

Relationship between python-future and other compatibility tools

How does this relate to 2to3?

2to3 is a powerful and flexible tool that can produce different
styles of Python 3 code. It is, however, primarily designed for one-way
porting efforts, for projects that can leave behind Python 2 support.

The example at the top of the 2to3 docs [http://docs.python.org/2/library/2to3.html] demonstrates this. After
transformation by 2to3, example.py looks like this:

def greet(name):
 print("Hello, {0}!".format(name))
print("What's your name?")
name = input()
greet(name)

This is Python 3 code that, although syntactically valid on Python 2,
is semantically incorrect. On Python 2, it raises an exception for
most inputs; worse, it allows arbitrary code execution by the user
for specially crafted inputs because of the eval() executed by Python
2’s input() function.

This is not an isolated example; almost every output of 2to3 will need
modification to provide backward compatibility with Python 2. As an
alternative, the python-future project provides a script called
futurize that is based on lib2to3 but will produce code that is
compatible with both platforms (Py2 and Py3).

Can I maintain a Python 2 codebase and use 2to3 to automatically convert to Python 3 in the setup script?

This was originally the approach recommended by Python’s core developers,
but it has some large drawbacks:

1. First, your actual working codebase will be stuck with Python 2’s
warts and smaller feature set for as long as you need to retain Python 2
compatibility. This may be at least 5 years for many projects, possibly
much longer.

2. Second, this approach carries the significant disadvantage that you
cannot apply patches submitted by Python 3 users against the
auto-generated Python 3 code. (See this talk [http://www.youtube.com/watch?v=xNZ4OVO2Z_E] by Jacob Kaplan-Moss.)

What is the relationship between future and six?

python-future is a higher-level compatibility layer than six that
includes more backported functionality from Python 3, more forward-ported
functionality from Python 2, and supports cleaner code, but requires more
modern Python versions to run.

python-future and six share the same goal of making it possible to write
a single-source codebase that works on both Python 2 and Python 3.
python-future has the further goal of allowing standard Py3 code to run with
almost no modification on both Py3 and Py2. future provides a more
complete set of support for Python 3’s features, including backports of
Python 3 builtins such as the bytes object (which is very different
to Python 2’s str object) and several standard library modules.

python-future supports only Python 2.7+ and Python 3.4+, whereas six
supports all versions of Python from 2.4 onwards. (See
Which versions of Python does python-future support?.) If you must support older Python versions,
six will be essential for you. However, beware that maintaining
single-source compatibility with older Python versions is ugly and not
fun [http://lucumr.pocoo.org/2013/5/21/porting-to-python-3-redux/].

If you can drop support for older Python versions, python-future leverages
some important features introduced into Python 2.7, such as
import hooks, and a comprehensive and well-tested set of backported
functionality, to allow you to write more idiomatic, maintainable code with
fewer compatibility hacks.

What is the relationship between python-future and python-modernize?

python-future contains, in addition to the future compatibility
package, a futurize script that is similar to python-modernize.py
in intent and design. Both are based heavily on 2to3.

Whereas python-modernize converts Py2 code into a common subset of
Python 2 and 3, with six as a run-time dependency, futurize
converts either Py2 or Py3 code into (almost) standard Python 3 code,
with future as a run-time dependency.

Because future provides more backported Py3 behaviours from six,
the code resulting from futurize is more likely to work
identically on both Py3 and Py2 with less additional manual porting
effort.

Platform and version support

Which versions of Python does python-future support?

Python 2.7, and 3.4+ only.

Python 2.7 introduced many important forward-compatibility
features (such as import hooks, b'...' literals and __future__
definitions) that greatly reduce the maintenance burden for single-source
Py2/3 compatible code. future leverages these features and aims to
close the remaining gap between Python 3 and 2.7.

Do you support Pypy?

Yes, except for the standard library import hooks (currently). Feedback
and pull requests are welcome!

Do you support IronPython and/or Jython?

Not sure. This would be nice…

Support

Is there a mailing list?

Yes, please ask any questions on the python-porting [https://mail.python.org/mailman/listinfo/python-porting] mailing list.

Contributing

Can I help?

Yes please :) We welcome bug reports, additional tests, pull requests,
and stories of either success or failure with using it. Help with the fixers
for the futurize script is particularly welcome.

Where is the repo?

https://github.com/PythonCharmers/python-future.

Standard library incompatibilities

Some standard library interfaces have changed in ways that require
different code than normal Py3 code in order to achieve Py2/3
compatibility.

Here we will attempt to document these, together with known workarounds:

Standard library incompatibilities

	module

	object / feature

	section

	array

	array constructor

	array.array()

	array

	array.read() method

	array.array.read()

	base64

	decodebytes() function

	base64.decodebytes() and base64.encodebytes()

	re

	ASCII mode

	re.ASCII

To contribute to this, please email the python-porting list or send a
pull request. See Contributing.

array.array()

The first argument to array.array(typecode[, initializer]) must be a native
platform string: unicode string on Python 3, byte string on Python 2.

	Python 2::
	>>> array.array(b'b')
array.array(b'b')

>>> array.array(u'u')
TypeError: must be char, not unicode

	Python 3::
	>>> array.array(b'b')
TypeError: must be a unicode character, not bytes

>>> array.array(u'b')
array('b')

This means that the typecode cannot be specified portably across Python 3 and Python 2
with a single string literal when from __future__ import unicode_literals is in effect.

You can use the following code on both Python 3 and Python 2:

from __future__ import unicode_literals
from future.utils import bytes_to_native_str
import array

...

a = array.array(bytes_to_native_str(b'b'))

This was fixed in Python 2.7.11 [https://hg.python.org/cpython/file/6d1b6a68f775/Misc/NEWS#l233].
Since then, array.array() now also accepts unicode format typecode.

array.array.read()

This method has been removed in Py3. This crops up in e.g. porting http.client.

base64.decodebytes() and base64.encodebytes()

The base64 module on Py2 has no decodebytes or encodebytes functions.

re.ASCII

Python 3 code using regular expressions sometimes looks like this (from
urllib.request [https://docs.python.org/3/library/urllib.request.html#module-urllib.request]):

re.compile(r":\d+$", re.ASCII)

This enables ‘ASCII mode’ for regular expressions (see the docs here [http://docs.python.org/3/library/re.html#re.ASCII]). Python 2’s
re [https://docs.python.org/3/library/re.html#module-re] module has no equivalent mode.

struct.pack()

Before Python version 2.7.7, the struct.pack() [https://docs.python.org/3/library/struct.html#struct.pack] function
required a native string as its format argument. For example:

>>> from __future__ import unicode_literals
>>> from struct import pack
>>> pack('<4H2I', version, rec_type, build, year, file_hist_flags, ver_can_read)

raised TypeError: Struct() argument 1 must be string, not unicode.

This was fixed in Python 2.7.7 [https://hg.python.org/cpython/raw-file/f89216059edf/Misc/NEWS].
Since then, struct.pack() now also accepts unicode format
strings.

Older interfaces

In addition to the direct and install_aliases() interfaces (described in
Standard library imports), future supports four other interfaces to
the reorganized standard library. This is largely for historical reasons (for
versions prior to 0.14).

future.moves interface

The future.moves interface avoids import hooks. It may therefore be more
robust, at the cost of less idiomatic code. Use it as follows:

from future.moves import queue
from future.moves import socketserver
from future.moves.http.client import HTTPConnection
etc.

If you wish to achieve the effect of a two-level import such as this:

import http.client

portably on both Python 2 and Python 3, note that Python currently does not
support syntax like this:

from future.moves import http.client

One workaround is to replace the dot with an underscore:

import future.moves.http.client as http_client

Comparing future.moves and six.moves

future.moves and six.moves provide a similar Python 3-style
interface to the native standard library module definitions.

The major difference is that the future.moves package is a real Python package
(future/moves/__init__.py) with real modules provided as .py files, whereas
six.moves constructs fake _LazyModule module objects within the Python
code and injects them into the sys.modules cache.

The advantage of six.moves is that the code fits in a single module that can be
copied into a project that seeks to eliminate external dependencies.

The advantage of future.moves is that it is likely to be more robust in the
face of magic like Django’s auto-reloader and tools like py2exe and
cx_freeze. See issues #51, #53, #56, and #63 in the six project for
more detail of bugs related to the six.moves approach.

import_ and from_import functions

The functional interface is to use the import_ and from_import
functions from future.standard_library as follows:

from future.standard_library import import_, from_import

http = import_('http.client')
urllib = import_('urllib.request')

urlopen, urlsplit = from_import('urllib.request', 'urlopen', 'urlsplit')

This interface also works with two-level imports.

Context-manager for import hooks

The context-manager interface is via a context-manager called hooks:

from future.standard_library import hooks
with hooks():
 import socketserver
 import queue
 import configparser
 import test.support
 import html.parser
 from collections import UserList
 from itertools import filterfalse, zip_longest
 from http.client import HttpConnection
 import urllib.request
 # and other moved modules and definitions

This interface is straightforward and effective, using PEP 302 import
hooks. However, there are reports that this sometimes leads to problems
(see issue #238). Until this is resolved, it is probably safer to use direct
imports or one of the other import mechanisms listed above.

install_hooks() call (deprecated)

The last interface to the reorganized standard library is via a call to
install_hooks():

from future import standard_library
standard_library.install_hooks()

import urllib
f = urllib.request.urlopen('http://www.python.org/')

standard_library.remove_hooks()

If you use this interface, it is recommended to disable the import hooks again
after use by calling remove_hooks(), in order to prevent the futurized
modules from being invoked inadvertently by other modules. (Python does not
automatically disable import hooks at the end of a module, but keeps them
active for the life of a process unless removed.)

Changes in previous versions

Changes in the most recent major version are here: What’s New.

Changes in version 0.14.3 (2014-12-15)

This is a bug-fix release:

	Expose contents of thread (not dummy_thread) as _thread on Py2 (Issue #124)

	Add signed support for newint.to_bytes() (Issue #128)

	Fix OrderedDict.clear() on Py2.6 (Issue #125)

	Improve newrange: equality and slicing, start/stop/step properties, refactoring (Issues #129, #130)

	Minor doc updates

Changes in version 0.14.2 (2014-11-21)

This is a bug-fix release:

	Speed up importing of past.translation (Issue #117)

	html.escape(): replace function with the more robust one from Py3.4

	futurize: avoid displacing encoding comments by __future__ imports (Issues #97, #10, #121)

	futurize: don’t swallow exit code (Issue #119)

	Packaging: don’t forcibly remove the old build dir in setup.py (Issue #108)

	Docs: update further docs and tests to refer to install_aliases() instead of
install_hooks()

	Docs: fix iteritems import error in cheat sheet (Issue #120)

	Tests: don’t rely on presence of test.test_support on Py2 or test.support on Py3 (Issue #109)

	Tests: don’t override existing PYTHONPATH for tests (PR #111)

Changes in version 0.14.1 (2014-10-02)

This is a minor bug-fix release:

	Docs: add a missing template file for building docs (Issue #108)

	Tests: fix a bug in error handling while reporting failed script runs (Issue #109)

	install_aliases(): don’t assume that the test.test_support module always
exists on Py2 (Issue #109)

Changes in version 0.14.0 (2014-10-02)

This is a major new release that offers a cleaner interface for most imports in
Python 2/3 compatible code.

Instead of this interface:

>>> from future.builtins import str, open, range, dict

>>> from future.standard_library import hooks
>>> with hooks():
... import queue
... import configparser
... import tkinter.dialog
... # etc.

You can now use the following interface for much Python 2/3 compatible code:

>>> # Alias for future.builtins on Py2:
>>> from builtins import str, open, range, dict

>>> # Alias for future.moves.* on Py2:
>>> import queue
>>> import configparser
>>> import tkinter.dialog
>>> etc.

Notice that the above code will run on Python 3 even without the presence of the
future package. Of the 44 standard library modules that were refactored with
PEP 3108, 30 are supported with direct imports in this manner. (These are listed
here: Direct imports.)

The other 14 standard library modules that kept the same top-level names in
Py3.x are not supported with this direct import interface on Py2. These include
the 5 modules in the Py3 urllib package. These modules are accessible through
the following interface (as well as the interfaces offered in previous versions
of python-future):

from future.standard_library import install_aliases
install_aliases()

from collections import UserDict, UserList, UserString
import dbm.gnu
from itertools import filterfalse, zip_longest
from subprocess import getoutput, getstatusoutput
from sys import intern
import test.support
from urllib.request import urlopen
from urllib.parse import urlparse
etc.
from collections import Counter, OrderedDict # backported to Py2.6

The complete list of packages supported with this interface is here:
Aliased imports.

For more information on these and other interfaces to the standard library, see
Standard library imports.

Bug fixes

	This release expands the future.moves package to include most of the remaining
modules that were moved in the standard library reorganization (PEP 3108).
(Issue #104)

	This release also removes the broken --doctests_only option from the futurize
and pasteurize scripts for now. (Issue #103)

Internal cleanups

The project folder structure has changed. Top-level packages are now in a
src folder and the tests have been moved into a project-level tests
folder.

The following deprecated internal modules have been removed (Issue #80):

	future.utils.encoding and future.utils.six.

Deprecations

The following internal functions have been deprecated and will be removed in a future release:

	future.standard_library.scrub_py2_sys_modules

	future.standard_library.scrub_future_sys_modules

Changes in version 0.13.1 (2014-09-23)

This is a bug-fix release:

	Fix (multiple) inheritance of future.builtins.object with metaclasses (Issues #91, #96)

	Fix futurize’s refactoring of urllib imports (Issue #94)

	Fix futurize --all-imports (Issue #101)

	Fix futurize --output-dir logging (Issue #102)

	Doc formatting fix (Issues #98, #100)

Changes in version 0.13.0 (2014-08-13)

This is mostly a clean-up release. It adds some small new compatibility features
and fixes several bugs.

Deprecations

The following unused internal modules are now deprecated. They will be removed in a
future release:

	future.utils.encoding and future.utils.six.

(Issue #80). See here [http://fedoraproject.org/wiki/Packaging:No_Bundled_Libraries]
for the rationale for unbundling them.

New features

	Docs: Add Cheat Sheet: Writing Python 2-3 compatible code from Ed Schofield’s PyConAU 2014 talk.

	Add newint.to_bytes() and newint.from_bytes(). (Issue #85)

	Add future.utils.raise_from as an equivalent to Py3’s raise ... from
... syntax. (Issue #86)

	Add past.builtins.oct() function.

	Add backports for Python 2.6 of subprocess.check_output(),
itertools.combinations_with_replacement(), and functools.cmp_to_key().

Bug fixes

	Use a private logger instead of the global logger in
future.standard_library (Issue #82). This restores compatibility of the
standard library hooks with flask. (Issue #79)

	Stage 1 of futurize no longer renames next methods to __next__
(Issue #81). It still converts obj.next() method calls to
next(obj) correctly.

	Prevent introduction of a second set of parentheses in print() calls in
some further cases.

	Fix isinstance checks for subclasses of future types. (Issue #89)

	Be explicit about encoding file contents as UTF-8 in unit tests. (Issue #63)
Useful for building RPMs and in other environments where LANG=C.

	Fix for 3-argument pow(x, y, z) with newint arguments. (Thanks to @str4d.)
(Issue #87)

Changes in version 0.12.4 (2014-07-18)

	Fix upcasting behaviour of newint. (Issue #76)

Changes in version 0.12.3 (2014-06-19)

	Add “official Python 3.4 support”: Py3.4 is now listed among the PyPI Trove
classifiers and the tests now run successfully on Py3.4. (Issue #67)

	Add backports of collections.OrderedDict and
collections.Counter for Python 2.6. (Issue #52)

	Add --version option for futurize and pasteurize scripts.
(Issue #57)

	Fix future.utils.ensure_new_type with long input. (Issue #65)

	Remove some false alarms on checks for ambiguous fixer names with
futurize -f

	
	Testing fixes:
	
	Don’t hard-code Python interpreter command in tests. (Issue #62)

	Fix deprecated unittest usage in Py3. (Issue #62)

	Be explicit about encoding temporary file contents as UTF-8 for
when LANG=C (e.g., when building an RPM). (Issue #63)

	All undecorated tests are now passing again on Python 2.6, 2.7, 3.3,
and 3.4 (thanks to Elliott Sales de Andrade).

	
	Docs:
	
	Add list of fixers used by futurize. (Issue #58)

	Add list of contributors to the Credits page.

Changes in version 0.12.2 (2014-05-25)

	Add bytes.maketrans() method. (Issue #51)

	Add support for Python versions between 2.7.0 and 2.7.3 (inclusive).
(Issue #53)

	Bug fix for newlist(newlist([1, 2, 3])). (Issue #50)

Changes in version 0.12.1 (2014-05-14)

	Python 2.6 support: future.standard_library now isolates the importlib
dependency to one function (import_) so the importlib backport may
not be needed.

	Doc updates

Changes in version 0.12.0 (2014-05-06)

The major new feature in this version is improvements in the support for the
reorganized standard library (PEP 3108) and compatibility of the import
mechanism with 3rd-party modules.

More robust standard-library import hooks

Note: backwards-incompatible change: As previously announced (see
Deprecated feature: auto-installation of standard-library import hooks), the import hooks must now be enabled
explicitly, as follows:

from future import standard_library
with standard_library.hooks():
 import html.parser
 import http.client
 ...

This now causes these modules to be imported from future.moves, a new
package that provides wrappers over the native Python 2 standard library with
the new Python 3 organization. As a consequence, the import hooks provided in
future.standard_library are now fully compatible with the Requests library [http://python-requests.org].

The functional interface with install_hooks() is still supported for
backwards compatibility:

from future import standard_library
standard_library.install_hooks():

import html.parser
import http.client
...
standard_library.remove_hooks()

Explicit installation of import hooks allows finer-grained control
over whether they are enabled for other imported modules that provide their own
Python 2/3 compatibility layer. This also improves compatibility of future
with tools like py2exe.

newobject base object defines fallback Py2-compatible special methods

There is a new future.types.newobject base class (available as
future.builtins.object) that can streamline Py2/3 compatible code by
providing fallback Py2-compatible special methods for its subclasses. It
currently provides next() and __nonzero__() as fallback methods on Py2
when its subclasses define the corresponding Py3-style __next__() and
__bool__() methods.

This obviates the need to add certain compatibility hacks or decorators to the
code such as the @implements_iterator decorator for classes that define a
Py3-style __next__ method.

In this example, the code defines a Py3-style iterator with a __next__
method. The object class defines a next method for Python 2 that maps
to __next__:

from future.builtins import object

class Upper(object):
 def __init__(self, iterable):
 self._iter = iter(iterable)
 def __next__(self): # note the Py3 interface
 return next(self._iter).upper()
 def __iter__(self):
 return self

assert list(Upper('hello')) == list('HELLO')

newobject defines other Py2-compatible special methods similarly:
currently these include __nonzero__ (mapped to __bool__) and
__long__ (mapped to __int__).

Inheriting from newobject on Python 2 is safe even if your class defines
its own Python 2-style __nonzero__ and next and __long__ methods.
Your custom methods will simply override those on the base class.

On Python 3, as usual, future.builtins.object simply refers to builtins.object.

past.builtins module improved

The past.builtins module is much more compatible with the corresponding
builtins on Python 2; many more of the Py2 unit tests pass on Py3. For example,
functions like map() and filter() now behave as they do on Py2 with with
None as the first argument.

The past.builtins module has also been extended to add Py3 support for
additional Py2 constructs that are not adequately handled by lib2to3 (see
Issue #37). This includes new execfile() and cmp() functions.
futurize now invokes imports of these functions from past.builtins.

surrogateescape error handler

The newstr type (future.builtins.str) now supports a backport of the
Py3.x 'surrogateescape' error handler for preserving high-bit
characters when encoding and decoding strings with unknown encodings.

newlist type

There is a new list type in future.builtins that offers .copy() and
.clear() methods like the list type in Python 3.

listvalues and listitems

future.utils now contains helper functions listvalues and
listitems, which provide Python 2-style list snapshotting semantics for
dictionaries in both Python 2 and Python 3.

These came out of the discussion around Nick Coghlan’s now-withdrawn PEP 469.

There is no corresponding listkeys(d) function; use list(d) instead.

Tests

The number of unit tests has increased from 600 to over 800. Most of the new
tests come from Python 3.3’s test suite.

Refactoring of future.standard_library.* -> future.backports

The backported standard library modules have been moved to future.backports
to make the distinction clearer between these and the new future.moves
package.

Backported http.server and urllib modules

Alpha versions of backports of the http.server and urllib module from
Python 3.3’s standard library are now provided in future.backports.

Use them like this:

from future.backports.urllib.request import Request # etc.
from future.backports.http import server as http_server

Or with this new interface:

from future.standard_library import import_, from_import

Request = from_import('urllib.request', 'Request', backport=True)
http = import_('http.server', backport=True)

Internal refactoring

The future.builtins.types module has been moved to future.types.
Likewise, past.builtins.types has been moved to past.types. The only
user-visible effect of this is to change repr(type(obj)) for instances
of these types. For example:

>>> from future.builtins import bytes
>>> bytes(b'abc')
>>> type(b)
future.types.newbytes.newbytes

Instead of:

>>> type(b) # prior to v0.12
future.builtins.types.newbytes.newbytes

Bug fixes

Many small improvements and fixes have been made across the project. Some highlights are:

	Fixes and updates from Python 3.3.5 have been included in the backported
standard library modules.

	Scrubbing of the sys.modules cache performed by remove_hooks() (also
called by the suspend_hooks and hooks context managers) is now more
conservative.

	The fix_next and fix_reduce fixers have been moved to stage 1 of
futurize.

	futurize: Shebang lines such as #!/usr/bin/env python and source code
file encoding declarations like # -*- coding=utf-8 -*- are no longer occasionally
displaced by from __future__ import ... statements. (Issue #10)

	Improved compatibility with py2exe (Issue #31 [https://github.com/PythonCharmers/python-future/issues/31]).

	The future.utils.bytes_to_native_str function now returns a platform-native string
object and future.utils.native_str_to_bytes returns a newbytes object on Py2.
(Issue #47 [https://github.com/PythonCharmers/python-future/issues/47]).

	The backported http.client module and related modules use other new
backported modules such as email. As a result they are more compliant
with the Python 3.3 equivalents.

Changes in version 0.11.4 (2014-05-25)

This release contains various small improvements and fixes:

	This release restores Python 2.6 compatibility. (Issue #42)

	The fix_absolute_import fixer now supports Cython .pyx modules. (Issue
#35)

	Right-division with newint objects is fixed. (Issue #38)

	The fix_dict fixer has been moved to stage2 of futurize.

	Calls to bytes(string, encoding[, errors]) now work with encoding and
errors passed as positional arguments. Previously this only worked if
encoding and errors were passed as keyword arguments.

	The 0-argument super() function now works from inside static methods such
as __new__. (Issue #36)

	future.utils.native(d) calls now work for future.builtins.dict objects.

Changes in version 0.11.3 (2014-02-27)

This release has improvements in the standard library import hooks mechanism and
its compatibility with 3rd-party modules:

Improved compatibility with requests

The __exit__ function of the hooks context manager and the
remove_hooks function both now remove submodules of
future.standard_library from the sys.modules cache. Therefore this code
is now possible on Python 2 and 3:

from future import standard_library
standard_library.install_hooks()
import http.client
standard_library.remove_hooks()
import requests

data = requests.get('http://www.google.com')

Previously, this required manually removing http and http.client from
sys.modules before importing requests on Python 2.x. (Issue #19)

This change should also improve the compatibility of the standard library hooks
with any other module that provides its own Python 2/3 compatibility code.

Note that the situation will improve further in version 0.12; import hooks will
require an explicit function call or the hooks context manager.

Conversion scripts explicitly install import hooks

The futurize and pasteurize scripts now add an explicit call to
install_hooks() to install the standard library import hooks. These scripts
now add these two lines:

from future import standard_library
standard_library.install_hooks()

instead of just the first one. The next major version of future (0.12) will
require the explicit call or use of the hooks context manager. This will
allow finer-grained control over whether import hooks are enabled for other
imported modules, such as requests, which provide their own Python 2/3
compatibility code.

futurize script no longer adds unicode_literals by default

There is a new --unicode-literals flag to futurize that adds the
import:

from __future__ import unicode_literals

to the top of each converted module. Without this flag, futurize now no
longer adds this import. (Issue #22)

The pasteurize script for converting from Py3 to Py2/3 still adds
unicode_literals. (See the comments in Issue #22 for an explanation.)

Changes in version 0.11 (2014-01-28)

There are several major new features in version 0.11.

past package

The python-future project now provides a past package in addition to the
future package. Whereas future provides improved compatibility with
Python 3 code to Python 2, past provides support for using and interacting
with Python 2 code from Python 3. The structure reflects that of future,
with past.builtins and past.utils. There is also a new
past.translation package that provides transparent translation of Python 2
code to Python 3. (See below.)

One purpose of past is to ease module-by-module upgrades to
codebases from Python 2. Another is to help with enabling Python 2 libraries to
support Python 3 without breaking the API they currently provide. (For example,
user code may expect these libraries to pass them Python 2’s 8-bit strings,
rather than Python 3’s bytes object.) A third purpose is to help migrate
projects to Python 3 even if one or more dependencies are still on Python 2.

Currently past.builtins provides forward-ports of Python 2’s str and
dict objects, basestring, and list-producing iterator functions. In
later releases, past.builtins will be used internally by the
past.translation package to help with importing and using old Python 2
modules in a Python 3 environment.

Auto-translation of Python 2 modules upon import

past provides an experimental translation package to help
with importing and using old Python 2 modules in a Python 3 environment.

This is implemented using import hooks that attempt to automatically
translate Python 2 modules to Python 3 syntax and semantics upon import. Use
it like this:

$ pip3 install plotrique==0.2.5-7 --no-compile # to ignore SyntaxErrors
$ python3

Then pass in a whitelist of module name prefixes to the
past.translation.autotranslate() function. Example:

>>> from past.translation import autotranslate
>>> autotranslate(['plotrique'])
>>> import plotrique

This is intended to help you migrate to Python 3 without the need for all
your code’s dependencies to support Python 3 yet. It should be used as a
last resort; ideally Python 2-only dependencies should be ported
properly to a Python 2/3 compatible codebase using a tool like
futurize and the changes should be pushed to the upstream project.

For more information, see Using Python 2-only dependencies on Python 3.

Separate pasteurize script

The functionality from futurize --from3 is now in a separate script called
pasteurize. Use pasteurize when converting from Python 3 code to Python
2/3 compatible source. For more information, see pasteurize: Py3 to Py2/3.

pow()

There is now a pow() function in future.builtins.misc that behaves like
the Python 3 pow() function when raising a negative number to a fractional
power (returning a complex number).

input() no longer disabled globally on Py2

Previous versions of future deleted the input() function from
__builtin__ on Python 2 as a security measure. This was because
Python 2’s input() function allows arbitrary code execution and could
present a security vulnerability on Python 2 if someone expects Python 3
semantics but forgets to import input from future.builtins. This
behaviour has been reverted, in the interests of broadening the
compatibility of future with other Python 2 modules.

Please remember to import input from future.builtins if you use
input() in a Python 2/3 compatible codebase.

Deprecated feature: auto-installation of standard-library import hooks

Previous versions of python-future installed import hooks automatically upon
importing the standard_library module from future. This has been
deprecated in order to improve robustness and compatibility with modules like
requests that already perform their own single-source Python 2/3
compatibility.

As of v0.12, importing future.standard_library
will no longer install import hooks by default. Instead, please install the
import hooks explicitly as follows:

from future import standard_library
standard_library.install_hooks()

And uninstall them after your import statements using:

standard_library.remove_hooks()

Note: This is a backward-incompatible change.

Internal changes

The internal future.builtins.backports module has been renamed to
future.builtins.types. This will change the repr of future
types but not their use.

Changes in version 0.10.2 (2014-01-11)

New context-manager interface to standard_library.hooks

There is a new context manager future.standard_library.hooks. Use it like
this:

from future import standard_library
with standard_library.hooks():
 import queue
 import configserver
 from http.client import HTTPConnection
 # etc.

If not using this context manager, it is now encouraged to add an explicit call to
standard_library.install_hooks() as follows:

from future import standard_library
standard_library.install_hooks()

import queue
import html
import http.client
etc.

And to remove the hooks afterwards with:

standard_library.remove_hooks()

The functions install_hooks() and remove_hooks() were previously
called enable_hooks() and disable_hooks(). The old names are
deprecated (but are still available as aliases).

As usual, this feature has no effect on Python 3.

Changes in version 0.10.0 (2013-12-02)

Backported dict type

future.builtins now provides a Python 2 dict subclass whose
keys(), values(), and items() methods produce
memory-efficient iterators. On Python 2.7, these also have the same set-like
view behaviour as on Python 3. This can streamline code needing to iterate
over large dictionaries. For example:

from __future__ import print_function
from future.builtins import dict, range

squares = dict({i: i**2 for i in range(10**7)})

assert not isinstance(d.items(), list)
Because items() is memory-efficient, so is this:
square_roots = dict((i_squared, i) for (i, i_squared) in squares.items())

For more information, see dict.

Utility functions raise_ and exec_

The functions raise_with_traceback() and raise_() were
added to future.utils to offer either the Python 3.x or Python 2.x
behaviour for raising exceptions. Thanks to Joel Tratner for the
contribution of these. future.utils.reraise() is now deprecated.

A portable exec_() function has been added to future.utils from
six.

Bugfixes

	Fixed newint.__divmod__

	Improved robustness of installing and removing import hooks in future.standard_library

	v0.10.1: Fixed broken pip install future on Py3

Changes in version 0.9 (2013-11-06)

isinstance checks are supported natively with backported types

The isinstance function is no longer redefined in future.builtins
to operate with the backported int, bytes and str.
isinstance checks with the backported types now work correctly by
default; we achieve this through overriding the __instancecheck__
method of metaclasses of the backported types.

For more information, see isinstance.

futurize: minimal imports by default

By default, the futurize script now only adds the minimal set of
imports deemed necessary.

There is now an --all-imports option to the futurize script which
gives the previous behaviour, which is to add all __future__ imports
and from future.builtins import * imports to every module. (This even
applies to an empty __init__.py file.)

Looser type-checking for the backported str object

Now the future.builtins.str object behaves more like the Python 2
unicode object with regard to type-checking. This is to work around some
bugs / sloppiness in the Python 2 standard library involving mixing of
byte-strings and unicode strings, such as os.path.join in posixpath.py.

future.builtins.str still raises the expected TypeError exceptions from
Python 3 when attempting to mix it with future.builtins.bytes.

suspend_hooks() context manager added to future.standard_library

Pychecker (as of v0.6.1)’s checker.py attempts to import the builtins
module as a way of determining whether Python 3 is running. Since this
succeeds when from future import standard_library is in effect, this
check does not work and pychecker sets the wrong value for its internal PY2
flag is set.

To work around this, future now provides a context manager called
suspend_hooks that can be used as follows:

from future import standard_library
...
with standard_library.suspend_hooks():
 from pychecker.checker import Checker

Changes in version 0.8 (2013-10-28)

Python 2.6 support

future now includes support for Python 2.6.

To run the future test suite on Python 2.6, this additional package is needed:

pip install unittest2

http.server also requires the argparse package:

pip install argparse

Unused modules removed

The future.six module has been removed. future doesn’t require six
(and hasn’t since version 0.3). If you need support for Python versions before
2.6, six is the best option. future and six can be installed
alongside each other easily if needed.

The unused hacks module has also been removed from the source tree.

isinstance() added to future.builtins (v0.8.2)

It is now possible to use isinstance() calls normally after importing isinstance from
future.builtins. On Python 2, this is specially defined to be compatible with
future’s backported int, str, and bytes types, as well as
handling Python 2’s int/long distinction.

The result is that code that uses isinstance to perform type-checking of
ints, strings, and bytes should now work identically on Python 2 as on Python 3.

The utility functions isint, istext, and isbytes provided before for
compatible type-checking across Python 2 and 3 in future.utils are now
deprecated.

Summary of all changes

	v0.15.0:
	
	Full backports of urllib.parse and other urllib submodules are exposed by install_aliases().

	tkinter.ttk support

	Initial surrogateescape support

	Additional backports: collections, http constants, etc.

	Bug fixes

	v0.14.3:
	
	Bug fixes

	v0.14.2:
	
	Bug fixes

	v0.14.1:
	
	Bug fixes

	v0.14.0:
	
	New top-level builtins package on Py2 for cleaner imports. Equivalent to
future.builtins

	New top-level packages on Py2 with the same names as Py3 standard modules:
configparser, copyreg, html, http, xmlrpc, winreg

	v0.13.1:
	
	Bug fixes

	v0.13.0:
	
	Cheat sheet for writing Python 2/3 compatible code

	to_int and from_int methods for newbytes

	Bug fixes

	v0.12.0:
	
	Add newobject and newlist types

	Improve compatibility of import hooks with Requests, py2exe

	No more auto-installation of import hooks by future.standard_library

	New future.moves package

	past.builtins improved

	newstr.encode(..., errors='surrogateescape') supported

	Refactoring: future.standard_library submodules -> future.backports

	Refactoring: future.builtins.types -> future.types

	Refactoring: past.builtins.types -> past.types

	New listvalues and listitems functions in future.utils

	Many bug fixes to futurize, future.builtins, etc.

	v0.11.4:
	
	Restore Py2.6 compatibility

	v0.11.3:
	
	The futurize and pasteurize scripts add an explicit call to
future.standard_library.install_hooks() whenever modules affected by
PEP 3108 are imported.

	The future.builtins.bytes constructor now accepts frozenset
objects as on Py3.

	v0.11.2:
	
	The past.translation.autotranslate feature now finds modules to import
more robustly and works with Python eggs.

	v0.11.1:
	
	Update to requirements_py26.txt for Python 2.6. Small updates to
docs and tests.

	v0.11:
	
	New past package with past.builtins and past.translation
modules.

	v0.10.2:
	
	Improvements to stdlib hooks. New context manager:
future.standard_library.hooks().

	New raise_ and raise_with_traceback functions in future.utils.

	v0.10:
	
	New backported dict object with set-like keys, values, items

	v0.9:
	
	isinstance() [https://docs.python.org/3/library/functions.html#isinstance] hack removed in favour of __instancecheck__ on the
metaclasses of the backported types

	futurize now only adds necessary imports by default

	Looser type-checking by future.builtins.str when combining with Py2
native byte-strings.

	v0.8.3:
	
	New --all-imports option to futurize

	Fix bug with str.encode() with encoding as a non-keyword arg

	v0.8.2:
	
	New isinstance function in future.builtins. This obviates
and deprecates the utility functions for type-checking in future.utils.

	v0.8.1:
	
	Backported socketserver.py. Fixes sporadic test failures with
http.server (related to threading and old-style classes used in Py2.7’s
SocketServer.py).

	Move a few more safe futurize fixes from stage2 to stage1

	Bug fixes to future.utils

	v0.8:
	
	Added Python 2.6 support

	Removed unused modules: future.six and future.hacks

	Removed undocumented functions from future.utils

	v0.7:
	
	Added a backported Py3-like int object (inherits from long).

	Added utility functions for type-checking and docs about
isinstance uses/alternatives.

	Fixes and stricter type-checking for bytes and str objects

	Added many more tests for the futurize script

	We no longer disable obsolete Py2 builtins by default with from
future.builtins import *. Use from future.builtins.disabled
import * instead.

	v0.6:
	
	Added a backported Py3-like str object (inherits from Py2’s unicode)

	Removed support for the form from future import *; use from future.builtins import * instead

	v0.5.3:
	
	Doc improvements

	v0.5.2:
	
	Add lots of docs and a Sphinx project

	v0.5.1:
	
	Upgraded included six module (included as future.utils.six) to v1.4.1

	http.server [https://docs.python.org/3/library/http.server.html#module-http.server] module backported

	bytes.split() and .rsplit() bugfixes

	v0.5.0:
	
	Added backported Py3-like bytes object

	v0.4.2:
	
	Various fixes

	v0.4.1:
	
	Added open() [https://docs.python.org/3/library/functions.html#open] (from io [https://docs.python.org/3/library/io.html#module-io] module on Py2)

	Improved docs

	v0.4.0:
	
	Added various useful compatibility functions to future.utils

	Reorganized package: moved all builtins to future.builtins; moved
all stdlib things to future.standard_library

	Renamed python-futurize console script to futurize

	Moved future.six to future.utils.six and pulled the most relevant
definitions to future.utils.

	More improvements to “Py3 to both” conversion (futurize.py --from3)

	v0.3.5:
	
	Fixed broken package setup (“package directory ‘libfuturize/tests’ does not exist”)

	v0.3.4:
	
	Added itertools.zip_longest

	Updated 2to3_backcompat tests to use futurize.py

	Improved libfuturize fixers: correct order of imports; add imports only when necessary (except absolute_import currently)

	v0.3.3:
	
	Added python-futurize console script

	Added itertools.filterfalse

	Removed docs about unfinished backports (urllib etc.)

	Removed old Py2 syntax in some files that breaks py3 setup.py install

	v0.3.2:
	
	Added test.support module

	Added UserList, UserString, UserDict classes to collections module

	Removed int -> long mapping

	Added backported _markupbase.py etc. with new-style classes to fix travis-ci build problems

	Added working html and http.client backported modules

	v0.3.0:
	
	Generalized import hooks to allow dotted imports

	Added backports of urllib, html, http modules from Py3.3 stdlib using future

	Added futurize script for automatically turning Py2 or Py3 modules into
cross-platform Py3 modules

	Renamed future.standard_library_renames to
future.standard_library. (No longer just renames, but backports too.)

	v0.2.2.1:
	
	Small bug fixes to get tests passing on travis-ci.org

	v0.2.1:
	
	Small bug fixes

	v0.2.0:
	
	Features module renamed to modified_builtins

	New functions added: round() [https://docs.python.org/3/library/functions.html#round], input() [https://docs.python.org/3/library/functions.html#input]

	No more namespace pollution as a policy:

from future import *

should have no effect on Python 3. On Python 2, it only shadows the
builtins; it doesn’t introduce any new names.

	End-to-end tests with Python 2 code and 2to3 now work

	v0.1.0:
	
	first version with tests!

	removed the inspect-module magic

	v0.0.x:
	
	initial releases. Use at your peril.

Licensing and credits

Licence

The software is distributed under an MIT licence. The text is as follows
(from LICENSE.txt):

Copyright (c) 2013-2019 Python Charmers Pty Ltd, Australia

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Sponsors

Python Charmers Pty Ltd, Australia, and Python Charmers Pte Ltd, Singapore.
http://pythoncharmers.com

Pinterest https://opensource.pinterest.com/

Maintainer

Python-Future is currently maintained by Jordan M. Adler <jordan.m.adler@gmail.com>.

Authors

Python-Future is largely written by Ed Schofield <ed@pythoncharmers.com> with the help of various contributors:

	Jordan Adler

	Jeroen Akkerman

	Kyle Altendorf

	Grant Bakker

	Jacob Beck

	Fumihiro (Ben) Bessho

	Shiva Bhusal

	Nate Bogdanowicz

	Tomer Chachamu

	Christian Clauss

	Denis Cornehl

	Nicolas Delaby

	Chad Dombrova

	Jon Dufresne

	Corey Farwell

	Eric Firing

	Joe Gordon

	Maximilian Hils

	Miro Hrončok

	Mark Huang

	Martijn Jacobs

	Michael Joseph

	Waldemar Kornewald

	Alexey Kotlyarov

	Steve Kowalik

	Lion Krischer

	Marcin Kuzminski

	Joshua Landau

	German Larrain

	Chris Lasher

	ghanshyam lele

	Calum Lind

	Tobias Megies

	Anika Mukherji

	Jon Parise

	Matthew Parnell

	Tom Picton

	Miga Purg

	Éloi Rivard

	Sesh Sadasivam

	Elliott Sales de Andrade

	Aiden Scandella

	Yury Selivanov

	Tim Shaffer

	Sameera Somisetty

	Louis Sautier

	Gregory P. Smith

	Chase Sterling

	Daniel Szoska

	Flaviu Tamas

	Jeff Tratner

	Tim Tröndle

	Brad Walker

	Andrew Wason

	Jeff Widman

	Dan Yeaw

	Hackalog (GitHub user)

	lsm (GiHub user)

	Mystic-Mirage (GitHub user)

	str4d (GitHub user)

	ucodery (GitHub user)

	urain39 (GitHub user)

	9seconds (GitHub user)

	Varriount (GitHub user)

Suggestions and Feedback

	Chris Adams

	Martijn Faassen

	Joe Gordon

	Lion Krischer

	Danielle Madeley

	Val Markovic

	wluebbe (GitHub user)

Other Credits

	The backported super() and range() functions are derived from Ryan
Kelly’s magicsuper module and Dan Crosta’s xrange module.

	The futurize and pasteurize scripts use lib2to3, lib3to2, and
parts of Armin Ronacher’s python-modernize code.

	The python_2_unicode_compatible decorator is from Django. The
implements_iterator and with_metaclass decorators are from Jinja2.

	The exec_ function and some others in future.utils are from the
six module by Benjamin Peterson.

	The raise_ and raise_with_traceback functions were contributed by
Jeff Tratner.

	A working version of raise_from was contributed by Varriount (GitHub).

	Documentation is generated with Sphinx [http://sphinx.pocoo.org] using the
sphinx-bootstrap theme.

	past.translation is inspired by and borrows some code from Sanjay Vinip’s
uprefix module.

API Reference (in progress)

NOTE: This page is still a work in progress… We need to go through our
docstrings and make them sphinx-compliant, and figure out how to improve
formatting with the sphinx-bootstrap-theme plugin. Pull requests would be
very welcome.

	future.builtins Interface

	Backported types from Python 3

	For more information:

	range()

	super()

	round()

	future.standard_library Interface

	Limitations

	future.utils Interface

	past.builtins Interface

	Forward-ported types from Python 2

future.builtins Interface

A module that brings in equivalents of the new and modified Python 3
builtins into Py2. Has no effect on Py3.

See the docs here [http://python-future.org/what-else.html]
(docs/what-else.rst) for more information.

Backported types from Python 3

This module contains backports the data types that were significantly changed
in the transition from Python 2 to Python 3.

	an implementation of Python 3’s bytes object (pure Python subclass of
Python 2’s builtin 8-bit str type)

	an implementation of Python 3’s str object (pure Python subclass of
Python 2’s builtin unicode type)

	a backport of the range iterator from Py3 with slicing support

It is used as follows:

from __future__ import division, absolute_import, print_function
from builtins import bytes, dict, int, range, str

to bring in the new semantics for these functions from Python 3. And
then, for example:

b = bytes(b'ABCD')
assert list(b) == [65, 66, 67, 68]
assert repr(b) == "b'ABCD'"
assert [65, 66] in b

These raise TypeErrors:
b + u'EFGH'
b.split(u'B')
bytes(b',').join([u'Fred', u'Bill'])

s = str(u'ABCD')

These raise TypeErrors:
s.join([b'Fred', b'Bill'])
s.startswith(b'A')
b'B' in s
s.find(b'A')
s.replace(u'A', b'a')

This raises an AttributeError:
s.decode('utf-8')

assert repr(s) == 'ABCD' # consistent repr with Py3 (no u prefix)

for i in range(10**11)[:10]:
 pass

and:

class VerboseList(list):
 def append(self, item):
 print('Adding an item')
 super().append(item) # new simpler super() function

For more information:

	future.types.newbytes

	future.types.newdict

	future.types.newint

	future.types.newobject

	future.types.newrange

	future.types.newstr

Notes

range()

range is a custom class that backports the slicing behaviour from
Python 3 (based on the xrange module by Dan Crosta). See the
newrange module docstring for more details.

super()

super() is based on Ryan Kelly’s magicsuper module. See the
newsuper module docstring for more details.

round()

Python 3 modifies the behaviour of round() to use “Banker’s Rounding”.
See http://stackoverflow.com/a/10825998. See the newround module
docstring for more details.

future.standard_library Interface

Python 3 reorganized the standard library (PEP 3108). This module exposes
several standard library modules to Python 2 under their new Python 3
names.

It is designed to be used as follows:

from future import standard_library
standard_library.install_aliases()

And then these normal Py3 imports work on both Py3 and Py2:

import builtins
import copyreg
import queue
import reprlib
import socketserver
import winreg # on Windows only
import test.support
import html, html.parser, html.entites
import http, http.client, http.server
import http.cookies, http.cookiejar
import urllib.parse, urllib.request, urllib.response, urllib.error, urllib.robotparser
import xmlrpc.client, xmlrpc.server

import _thread
import _dummy_thread
import _markupbase

from itertools import filterfalse, zip_longest
from sys import intern
from collections import UserDict, UserList, UserString
from collections import OrderedDict, Counter, ChainMap # even on Py2.6
from subprocess import getoutput, getstatusoutput
from subprocess import check_output # even on Py2.6

(The renamed modules and functions are still available under their old
names on Python 2.)

This is a cleaner alternative to this idiom (see
http://docs.pythonsprints.com/python3_porting/py-porting.html):

try:
 import queue
except ImportError:
 import Queue as queue

Limitations

We don’t currently support these modules, but would like to:

import dbm
import dbm.dumb
import dbm.gnu
import collections.abc # on Py33
import pickle # should (optionally) bring in cPickle on Python 2

	
class future.standard_library.RenameImport(old_to_new)

	A class for import hooks mapping Py3 module names etc. to the Py2 equivalents.

	
future.standard_library.cache_py2_modules()

	Currently this function is unneeded, as we are not attempting to provide import hooks
for modules with ambiguous names: email, urllib, pickle.

	
future.standard_library.detect_hooks()

	Returns True if the import hooks are installed, False if not.

	
future.standard_library.disable_hooks()

	Deprecated. Use remove_hooks() instead. This will be removed by
future v1.0.

	
future.standard_library.enable_hooks()

	Deprecated. Use install_hooks() instead. This will be removed by
future v1.0.

	
class future.standard_library.exclude_local_folder_imports(*args)

	A context-manager that prevents standard library modules like configparser
from being imported from the local python-future source folder on Py3.

(This was need prior to v0.16.0 because the presence of a configparser
folder would otherwise have prevented setuptools from running on Py3. Maybe
it’s not needed any more?)

	
future.standard_library.from_import(module_name, *symbol_names, **kwargs)

	
	Example use:
	>>> HTTPConnection = from_import('http.client', 'HTTPConnection')
>>> HTTPServer = from_import('http.server', 'HTTPServer')
>>> urlopen, urlparse = from_import('urllib.request', 'urlopen', 'urlparse')

Equivalent to this on Py3:

>>> from module_name import symbol_names[0], symbol_names[1], ...

and this on Py2:

>>> from future.moves.module_name import symbol_names[0], ...

or:

>>> from future.backports.module_name import symbol_names[0], ...

except that it also handles dotted module names such as http.client.

	
class future.standard_library.hooks

	Acts as a context manager. Saves the state of sys.modules and restores it
after the ‘with’ block.

Use like this:

>>> from future import standard_library
>>> with standard_library.hooks():
... import http.client
>>> import requests

For this to work, http.client will be scrubbed from sys.modules after the
‘with’ block. That way the modules imported in the ‘with’ block will
continue to be accessible in the current namespace but not from any
imported modules (like requests).

	
future.standard_library.import_(module_name, backport=False)

	Pass a (potentially dotted) module name of a Python 3 standard library
module. This function imports the module compatibly on Py2 and Py3 and
returns the top-level module.

	Example use:
	>>> http = import_('http.client')
>>> http = import_('http.server')
>>> urllib = import_('urllib.request')

	Then:
	>>> conn = http.client.HTTPConnection(...)
>>> response = urllib.request.urlopen('http://mywebsite.com')
>>> # etc.

	Use as follows:
	>>> package_name = import_(module_name)

On Py3, equivalent to this:

>>> import module_name

On Py2, equivalent to this if backport=False:

>>> from future.moves import module_name

or to this if backport=True:

>>> from future.backports import module_name

except that it also handles dotted module names such as http.client
The effect then is like this:

>>> from future.backports import module
>>> from future.backports.module import submodule
>>> module.submodule = submodule

Note that this would be a SyntaxError in Python:

>>> from future.backports import http.client

	
future.standard_library.install_aliases()

	Monkey-patches the standard library in Py2.6/7 to provide
aliases for better Py3 compatibility.

	
future.standard_library.install_hooks()

	This function installs the future.standard_library import hook into
sys.meta_path.

	
future.standard_library.is_py2_stdlib_module(m)

	Tries to infer whether the module m is from the Python 2 standard library.
This may not be reliable on all systems.

	
future.standard_library.remove_hooks(scrub_sys_modules=False)

	This function removes the import hook from sys.meta_path.

	
future.standard_library.restore_sys_modules(scrubbed)

	Add any previously scrubbed modules back to the sys.modules cache,
but only if it’s safe to do so.

	
future.standard_library.scrub_future_sys_modules()

	Deprecated.

	
future.standard_library.scrub_py2_sys_modules()

	Removes any Python 2 standard library modules from sys.modules that
would interfere with Py3-style imports using import hooks. Examples are
modules with the same names (like urllib or email).

(Note that currently import hooks are disabled for modules like these
with ambiguous names anyway …)

	
class future.standard_library.suspend_hooks

	Acts as a context manager. Use like this:

>>> from future import standard_library
>>> standard_library.install_hooks()
>>> import http.client
>>> # ...
>>> with standard_library.suspend_hooks():
>>> import requests # incompatible with ``future``'s standard library hooks

If the hooks were disabled before the context, they are not installed when
the context is left.

future.utils Interface

A selection of cross-compatible functions for Python 2 and 3.

This module exports useful functions for 2/3 compatible code:

	bind_method: binds functions to classes

	native_str_to_bytes and bytes_to_native_str

	native_str: always equal to the native platform string object (because
this may be shadowed by imports from future.builtins)

	lists: lrange(), lmap(), lzip(), lfilter()

	
	iterable method compatibility:
	
	iteritems, iterkeys, itervalues

	viewitems, viewkeys, viewvalues

These use the original method if available, otherwise they use items,
keys, values.

	types:

	text_type: unicode in Python 2, str in Python 3

	string_types: basestring in Python 2, str in Python 3

	binary_type: str in Python 2, bytes in Python 3

	integer_types: (int, long) in Python 2, int in Python 3

	class_types: (type, types.ClassType) in Python 2, type in Python 3

	
	bchr(c):
	Take an integer and make a 1-character byte string

	
	bord(c)
	Take the result of indexing on a byte string and make an integer

	
	tobytes(s)
	Take a text string, a byte string, or a sequence of characters taken
from a byte string, and make a byte string.

	raise_from()

	raise_with_traceback()

This module also defines these decorators:

	python_2_unicode_compatible

	with_metaclass

	implements_iterator

Some of the functions in this module come from the following sources:

	Jinja2 (BSD licensed: see
https://github.com/mitsuhiko/jinja2/blob/master/LICENSE)

	Pandas compatibility module pandas.compat

	six.py by Benjamin Peterson

	Django

	
future.utils.as_native_str(encoding='utf-8')

	A decorator to turn a function or method call that returns text, i.e.
unicode, into one that returns a native platform str.

Use it as a decorator like this:

from __future__ import unicode_literals

class MyClass(object):
 @as_native_str(encoding='ascii')
 def __repr__(self):
 return next(self._iter).upper()

	
future.utils.binary_type

	alias of builtins.bytes

	
future.utils.bind_method(cls, name, func)

	Bind a method to class, python 2 and python 3 compatible.

	clstype
	class to receive bound method

	namebasestring
	name of method on class instance

	funcfunction
	function to be bound as method

None

	
future.utils.exec_(source, globals=None, locals=None, /)

	Execute the given source in the context of globals and locals.

The source may be a string representing one or more Python statements
or a code object as returned by compile().
The globals must be a dictionary and locals can be any mapping,
defaulting to the current globals and locals.
If only globals is given, locals defaults to it.

	
future.utils.implements_iterator(cls)

	From jinja2/_compat.py. License: BSD.

Use as a decorator like this:

@implements_iterator
class UppercasingIterator(object):
 def __init__(self, iterable):
 self._iter = iter(iterable)
 def __iter__(self):
 return self
 def __next__(self):
 return next(self._iter).upper()

	
future.utils.is_new_style(cls)

	Python 2.7 has both new-style and old-style classes. Old-style classes can
be pesky in some circumstances, such as when using inheritance. Use this
function to test for whether a class is new-style. (Python 3 only has
new-style classes.)

	
future.utils.isbytes(obj)

	
	Deprecated. Use::
	>>> isinstance(obj, bytes)

	after this import:
	>>> from future.builtins import bytes

	
future.utils.isidentifier(s, dotted=False)

	A function equivalent to the str.isidentifier method on Py3

	
future.utils.isint(obj)

	Deprecated. Tests whether an object is a Py3 int or either a Py2 int or
long.

Instead of using this function, you can use:

>>> from future.builtins import int
>>> isinstance(obj, int)

The following idiom is equivalent:

>>> from numbers import Integral
>>> isinstance(obj, Integral)

	
future.utils.isnewbytes(obj)

	Equivalent to the result of type(obj) == type(newbytes)
in other words, it is REALLY a newbytes instance, not a Py2 native str
object?

Note that this does not cover subclasses of newbytes, and it is not
equivalent to ininstance(obj, newbytes)

	
future.utils.istext(obj)

	
	Deprecated. Use::
	>>> isinstance(obj, str)

	after this import:
	>>> from future.builtins import str

	
future.utils.iteritems(obj, **kwargs)

	Use this only if compatibility with Python versions before 2.7 is
required. Otherwise, prefer viewitems().

	
future.utils.iterkeys(obj, **kwargs)

	Use this only if compatibility with Python versions before 2.7 is
required. Otherwise, prefer viewkeys().

	
future.utils.itervalues(obj, **kwargs)

	Use this only if compatibility with Python versions before 2.7 is
required. Otherwise, prefer viewvalues().

	
future.utils.native(obj)

	On Py3, this is a no-op: native(obj) -> obj

On Py2, returns the corresponding native Py2 types that are
superclasses for backported objects from Py3:

>>> from builtins import str, bytes, int

>>> native(str(u'ABC'))
u'ABC'
>>> type(native(str(u'ABC')))
unicode

>>> native(bytes(b'ABC'))
b'ABC'
>>> type(native(bytes(b'ABC')))
bytes

>>> native(int(10**20))
100000000000000000000L
>>> type(native(int(10**20)))
long

Existing native types on Py2 will be returned unchanged:

>>> type(native(u'ABC'))
unicode

	
future.utils.native_bytes

	alias of builtins.bytes

	
future.utils.native_str

	alias of builtins.str

	
future.utils.native_str_to_bytes(s, encoding='utf-8')

	On Py3, returns an encoded string.
On Py2, returns a newbytes type, ignoring the encoding argument.

	
future.utils.old_div(a, b)

	DEPRECATED: import old_div from past.utils instead.

Equivalent to a / b on Python 2 without from __future__ import
division.

TODO: generalize this to other objects (like arrays etc.)

	
future.utils.python_2_unicode_compatible(cls)

	A decorator that defines __unicode__ and __str__ methods under Python
2. Under Python 3, this decorator is a no-op.

To support Python 2 and 3 with a single code base, define a __str__
method returning unicode text and apply this decorator to the class, like
this:

>>> from future.utils import python_2_unicode_compatible

>>> @python_2_unicode_compatible
... class MyClass(object):
... def __str__(self):
... return u'Unicode string: 孔子'

>>> a = MyClass()

Then, after this import:

>>> from future.builtins import str

the following is True on both Python 3 and 2:

>>> str(a) == a.encode('utf-8').decode('utf-8')

True

and, on a Unicode-enabled terminal with the right fonts, these both print the
Chinese characters for Confucius:

>>> print(a)
>>> print(str(a))

The implementation comes from django.utils.encoding.

	
future.utils.raise_(tp, value=None, tb=None)

	A function that matches the Python 2.x raise statement. This
allows re-raising exceptions with the cls value and traceback on
Python 2 and 3.

	
future.utils.raise_with_traceback(exc, traceback=Ellipsis)

	Raise exception with existing traceback.
If traceback is not passed, uses sys.exc_info() to get traceback.

	
future.utils.reraise(tp, value=None, tb=None)

	A function that matches the Python 2.x raise statement. This
allows re-raising exceptions with the cls value and traceback on
Python 2 and 3.

	
future.utils.text_type

	alias of builtins.str

	
future.utils.tobytes(s)

	Encodes to latin-1 (where the first 256 chars are the same as
ASCII.)

	
future.utils.viewitems(obj, **kwargs)

	Function for iterating over dictionary items with the same set-like
behaviour on Py2.7 as on Py3.

Passes kwargs to method.

	
future.utils.viewkeys(obj, **kwargs)

	Function for iterating over dictionary keys with the same set-like
behaviour on Py2.7 as on Py3.

Passes kwargs to method.

	
future.utils.viewvalues(obj, **kwargs)

	Function for iterating over dictionary values with the same set-like
behaviour on Py2.7 as on Py3.

Passes kwargs to method.

	
future.utils.with_metaclass(meta, *bases)

	Function from jinja2/_compat.py. License: BSD.

Use it like this:

class BaseForm(object):
 pass

class FormType(type):
 pass

class Form(with_metaclass(FormType, BaseForm)):
 pass

This requires a bit of explanation: the basic idea is to make a
dummy metaclass for one level of class instantiation that replaces
itself with the actual metaclass. Because of internal type checks
we also need to make sure that we downgrade the custom metaclass
for one level to something closer to type (that’s why __call__ and
__init__ comes back from type etc.).

This has the advantage over six.with_metaclass of not introducing
dummy classes into the final MRO.

past.builtins Interface

A resurrection of some old functions from Python 2 for use in Python 3. These
should be used sparingly, to help with porting efforts, since code using them
is no longer standard Python 3 code.

This module provides the following:

	Implementations of these builtin functions which have no equivalent on Py3:

	apply

	chr

	cmp

	execfile

	Aliases:

	intern <- sys.intern

	raw_input <- input

	reduce <- functools.reduce

	reload <- imp.reload

	unichr <- chr

	unicode <- str

	xrange <- range

	List-producing versions of the corresponding Python 3 iterator-producing functions:

	filter

	map

	range

	zip

	Forward-ported Py2 types:

	basestring

	dict

	str

	long

	unicode

	
class past.builtins.basestring

	A minimal backport of the Python 2 basestring type to Py3

	
past.builtins.chr(i)

	Return a byte-string of one character with ordinal i; 0 <= i <= 256

	
past.builtins.cmp(x, y) → integer

	Return negative if x<y, zero if x==y, positive if x>y.

	
past.builtins.dict

	alias of past.types.olddict.olddict

	
past.builtins.execfile(filename, myglobals=None, mylocals=None)

	Read and execute a Python script from a file in the given namespaces.
The globals and locals are dictionaries, defaulting to the current
globals and locals. If only globals is given, locals defaults to it.

	
past.builtins.filter(function or None, sequence) → list, tuple, or string

	Return those items of sequence for which function(item) is true.
If function is None, return the items that are true. If sequence
is a tuple or string, return the same type, else return a list.

	
past.builtins.intern(string) → string

	``Intern’’ the given string. This enters the string in the (global)
table of interned strings whose purpose is to speed up dictionary lookups.
Return the string itself or the previously interned string object with the
same value.

	
past.builtins.long

	alias of builtins.int

	
past.builtins.map(function, sequence[, sequence, ...]) → list [https://docs.python.org/3/library/stdtypes.html#list]

	Return a list of the results of applying the function to the
items of the argument sequence(s). If more than one sequence is
given, the function is called with an argument list consisting of
the corresponding item of each sequence, substituting None for
missing values when not all sequences have the same length. If
the function is None, return a list of the items of the sequence
(or a list of tuples if more than one sequence).

Test cases:
>>> oldmap(None, ‘hello world’)
[‘h’, ‘e’, ‘l’, ‘l’, ‘o’, ‘ ‘, ‘w’, ‘o’, ‘r’, ‘l’, ‘d’]

>>> oldmap(None, range(4))
[0, 1, 2, 3]

More test cases are in test_past.test_builtins.

	
past.builtins.raw_input(prompt=None, /)

	Read a string from standard input. The trailing newline is stripped.

The prompt string, if given, is printed to standard output without a
trailing newline before reading input.

If the user hits EOF (*nix: Ctrl-D, Windows: Ctrl-Z+Return), raise EOFError.
On *nix systems, readline is used if available.

	
past.builtins.reduce(function, sequence[, initial]) → value

	Apply a function of two arguments cumulatively to the items of a sequence,
from left to right, so as to reduce the sequence to a single value.
For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates
((((1+2)+3)+4)+5). If initial is present, it is placed before the items
of the sequence in the calculation, and serves as a default when the
sequence is empty.

	
past.builtins.reload(module)

	DEPRECATED

Reload the module and return it.

The module must have been successfully imported before.

	
past.builtins.str

	alias of past.types.oldstr.oldstr

	
past.builtins.unichr(i)

	Return a byte-string of one character with ordinal i; 0 <= i <= 256

	
past.builtins.unicode

	alias of builtins.str

	
past.builtins.xrange

	alias of builtins.range

Forward-ported types from Python 2

Forward-ports of types from Python 2 for use with Python 3:

	basestring: equivalent to (str, bytes) in isinstance checks

	dict: with list-producing .keys() etc. methods

	str: bytes-like, but iterating over them doesn’t product integers

	long: alias of Py3 int with L suffix in the repr

	unicode: alias of Py3 str with u prefix in the repr

	
class past.types.basestring

	A minimal backport of the Python 2 basestring type to Py3

	
past.types.long

	alias of builtins.int

	
class past.types.olddict

	A backport of the Python 3 dict object to Py2

	
has_key(k) → True if D has a key k, else False

	

	
items() → a set-like object providing a view on D’s items

	

	
iteritems()

	D.items() -> a set-like object providing a view on D’s items

	
iterkeys()

	D.keys() -> a set-like object providing a view on D’s keys

	
itervalues()

	D.values() -> an object providing a view on D’s values

	
keys() → a set-like object providing a view on D’s keys

	

	
values() → an object providing a view on D’s values

	

	
viewitems()

	D.items() -> a set-like object providing a view on D’s items

	
viewkeys()

	D.keys() -> a set-like object providing a view on D’s keys

	
viewvalues()

	D.values() -> an object providing a view on D’s values

	
class past.types.oldstr

	A forward port of the Python 2 8-bit string object to Py3

	
past.types.unicode

	alias of builtins.str

 Python Module Index

 f |
 p

 		 	

 		
 f	

 	[image: -]
 	
 future	

 	
 	
 future.builtins	

 	
 	
 future.standard_library	

 	
 	
 future.types	

 	
 	
 future.utils	

 		 	

 		
 p	

 	[image: -]
 	
 past	

 	
 	
 past.builtins	

 	
 	
 past.types	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	
 	as_native_str() (in module future.utils)

B

 	
 	basestring (class in past.builtins)

 	(class in past.types)

 	
 	binary_type (in module future.utils)

 	bind_method() (in module future.utils)

C

 	
 	cache_py2_modules() (in module future.standard_library)

 	
 	chr() (in module past.builtins)

 	cmp() (in module past.builtins)

D

 	
 	detect_hooks() (in module future.standard_library)

 	
 	dict (in module past.builtins)

 	disable_hooks() (in module future.standard_library)

E

 	
 	enable_hooks() (in module future.standard_library)

 	exclude_local_folder_imports (class in future.standard_library)

 	
 	exec_() (in module future.utils)

 	execfile() (in module past.builtins)

F

 	
 	filter() (in module past.builtins)

 	from_import() (in module future.standard_library)

 	
 future.builtins

 	module

 	
 future.standard_library

 	module

 	
 	
 future.types

 	module

 	
 future.utils

 	module

H

 	
 	has_key() (past.types.olddict method)

 	
 	hooks (class in future.standard_library)

I

 	
 	implements_iterator() (in module future.utils)

 	import_() (in module future.standard_library)

 	install_aliases() (in module future.standard_library)

 	install_hooks() (in module future.standard_library)

 	intern() (in module past.builtins)

 	is_new_style() (in module future.utils)

 	is_py2_stdlib_module() (in module future.standard_library)

 	isbytes() (in module future.utils)

 	isidentifier() (in module future.utils)

 	
 	isint() (in module future.utils)

 	isnewbytes() (in module future.utils)

 	istext() (in module future.utils)

 	items() (past.types.olddict method)

 	iteritems() (in module future.utils)

 	(past.types.olddict method)

 	iterkeys() (in module future.utils)

 	(past.types.olddict method)

 	itervalues() (in module future.utils)

 	(past.types.olddict method)

K

 	
 	keys() (past.types.olddict method)

L

 	
 	long (in module past.builtins)

 	(in module past.types)

M

 	
 	map() (in module past.builtins)

 	
 module

 	future.builtins

 	future.standard_library

 	future.types

 	future.utils

 	past.builtins

 	past.types

N

 	
 	native() (in module future.utils)

 	native_bytes (in module future.utils)

 	
 	native_str (in module future.utils)

 	native_str_to_bytes() (in module future.utils)

O

 	
 	old_div() (in module future.utils)

 	
 	olddict (class in past.types)

 	oldstr (class in past.types)

P

 	
 	
 past.builtins

 	module

 	
 	
 past.types

 	module

 	python_2_unicode_compatible() (in module future.utils)

R

 	
 	raise_() (in module future.utils)

 	raise_with_traceback() (in module future.utils)

 	raw_input() (in module past.builtins)

 	reduce() (in module past.builtins)

 	
 	reload() (in module past.builtins)

 	remove_hooks() (in module future.standard_library)

 	RenameImport (class in future.standard_library)

 	reraise() (in module future.utils)

 	restore_sys_modules() (in module future.standard_library)

S

 	
 	scrub_future_sys_modules() (in module future.standard_library)

 	scrub_py2_sys_modules() (in module future.standard_library)

 	
 	str (in module past.builtins)

 	suspend_hooks (class in future.standard_library)

T

 	
 	text_type (in module future.utils)

 	
 	tobytes() (in module future.utils)

U

 	
 	unichr() (in module past.builtins)

 	
 	unicode (in module past.builtins)

 	(in module past.types)

V

 	
 	values() (past.types.olddict method)

 	viewitems() (in module future.utils)

 	(past.types.olddict method)

 	
 	viewkeys() (in module future.utils)

 	(past.types.olddict method)

 	viewvalues() (in module future.utils)

 	(past.types.olddict method)

W

 	
 	with_metaclass() (in module future.utils)

X

 	
 	xrange (in module past.builtins)

Binding a method to a class

Python 2 draws a distinction between bound and unbound methods, whereas
in Python 3 this distinction is gone: unbound methods have been removed
from the language. To bind a method to a class compatibly across Python
3 and Python 2, you can use the bind_method() helper function:

from future.utils import bind_method

class Greeter(object):
 pass

def greet(self, message):
 print(message)

bind_method(Greeter, 'greet', greet)

g = Greeter()
g.greet('Hi!')

On Python 3, calling bind_method(cls, name, func) is equivalent to
calling setattr(cls, name, func). On Python 2 it is equivalent to:

import types
setattr(cls, name, types.MethodType(func, None, cls))

bytes

Handling bytes consistently and correctly has traditionally been one
of the most difficult tasks in writing a Py2/3 compatible codebase. This
is because the Python 2 bytes [https://docs.python.org/3/library/stdtypes.html#bytes] object is simply an alias for
Python 2’s str [https://docs.python.org/3/library/stdtypes.html#str], rather than a true implementation of the Python
3 bytes [https://docs.python.org/3/library/stdtypes.html#bytes] object, which is substantially different.

future contains a backport of the bytes object from Python 3
which passes most of the Python 3 tests for bytes. (See
tests/test_future/test_bytes.py in the source tree.) You can use it as
follows:

>>> from builtins import bytes
>>> b = bytes(b'ABCD')

On Py3, this is simply the builtin bytes [https://docs.python.org/3/library/stdtypes.html#bytes] object. On Py2, this
object is a subclass of Python 2’s str [https://docs.python.org/3/library/stdtypes.html#str] that enforces the same
strict separation of unicode strings and byte strings as Python 3’s
bytes [https://docs.python.org/3/library/stdtypes.html#bytes] object:

>>> b + u'EFGH' # TypeError
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: argument can't be unicode string

>>> bytes(b',').join([u'Fred', u'Bill'])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: sequence item 0: expected bytes, found unicode string

>>> b == u'ABCD'
False

>>> b < u'abc'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unorderable types: bytes() and <type 'unicode'>

In most other ways, these bytes [https://docs.python.org/3/library/stdtypes.html#bytes] objects have identical
behaviours to Python 3’s bytes [https://docs.python.org/3/library/stdtypes.html#bytes]:

b = bytes(b'ABCD')
assert list(b) == [65, 66, 67, 68]
assert repr(b) == "b'ABCD'"
assert b.split(b'B') == [b'A', b'CD']

Currently the easiest way to ensure identical behaviour of byte-strings
in a Py2/3 codebase is to wrap all byte-string literals b'...' in a
bytes() call as follows:

from builtins import bytes

...

b = bytes(b'This is my bytestring')

...

This is not perfect, but it is superior to manually debugging and fixing
code incompatibilities caused by the many differences between Py3 bytes
and Py2 strings.

The bytes [https://docs.python.org/3/library/stdtypes.html#bytes] type from builtins [https://docs.python.org/3/library/builtins.html#module-builtins] also provides support for the
surrogateescape error handler on Python 2.x. Here is an example that works
identically on Python 2.x and 3.x:

>>> from builtins import bytes
>>> b = bytes(b'\xff')
>>> b.decode('utf-8', 'surrogateescape')
'\udcc3'

This feature is in alpha. Please leave feedback here [https://github.com/PythonCharmers/python-future/issues] about whether this
works for you.

Known limitations

futurize and pasteurize are useful to automate much of the
work of porting, particularly the boring repetitive text substitutions. They also
help to flag which parts of the code require attention.

Nevertheless, futurize and pasteurize are still incomplete and make
some mistakes, like 2to3, on which they are based. Please report bugs on
GitHub [https://github.com/PythonCharmers/python-future/]. Contributions to
the lib2to3-based fixers for futurize and pasteurize are
particularly welcome! Please see Contributing.

futurize doesn’t currently make the following change automatically:

	Strings containing \U produce a SyntaxError on Python 3. An example is:

s = 'C:\Users'.

Python 2 expands this to s = 'C:\\Users', but Python 3 requires a raw
prefix (r'...'). This also applies to multi-line strings (including
multi-line docstrings).

Also see the tests in future/tests/test_futurize.py marked
@expectedFailure or @skip for known limitations.

Custom iterators

If you define your own iterators, there is an incompatibility in the method name
to retrieve the next item across Py3 and Py2. On Python 3 it is __next__,
whereas on Python 2 it is next.

The most elegant solution to this is to derive your custom iterator class from
builtins.object and define a __next__ method as you normally
would on Python 3. On Python 2, object then refers to the
future.types.newobject base class, which provides a fallback next
method that calls your __next__. Use it as follows:

from builtins import object

class Upper(object):
 def __init__(self, iterable):
 self._iter = iter(iterable)
 def __next__(self): # Py3-style iterator interface
 return next(self._iter).upper()
 def __iter__(self):
 return self

itr = Upper('hello')
assert next(itr) == 'H'
assert next(itr) == 'E'
assert list(itr) == list('LLO')

You can use this approach unless you are defining a custom iterator as a
subclass of a base class defined elsewhere that does not derive from
newobject. In that case, you can provide compatibility across
Python 2 and Python 3 using the next function from future.builtins:

from builtins import next

from some_module import some_base_class

class Upper2(some_base_class):
 def __init__(self, iterable):
 self._iter = iter(iterable)
 def __next__(self): # Py3-style iterator interface
 return next(self._iter).upper()
 def __iter__(self):
 return self

itr2 = Upper2('hello')
assert next(itr2) == 'H'
assert next(itr2) == 'E'

next() also works with regular Python 2 iterators with a .next method:

itr3 = iter(['one', 'three', 'five'])
assert 'next' in dir(itr3)
assert next(itr3) == 'one'

This approach is feasible whenever your code calls the next() function
explicitly. If you consume the iterator implicitly in a for loop or
list() call or by some other means, the future.builtins.next function
will not help; the third assertion below would fail on Python 2:

itr2 = Upper2('hello')

assert next(itr2) == 'H'
assert next(itr2) == 'E'
assert list(itr2) == list('LLO') # fails because Py2 implicitly looks
 # for a ``next`` method.

Instead, you can use a decorator called implements_iterator from
future.utils to allow Py3-style iterators to work identically on Py2, even
if they don’t inherit from future.builtins.object. Use it as follows:

from future.utils import implements_iterator

Upper2 = implements_iterator(Upper2)

print(list(Upper2('hello')))
prints ['H', 'E', 'L', 'L', 'O']

This can of course also be used with the @ decorator syntax when defining
the iterator as follows:

@implements_iterator
class Upper2(some_base_class):
 def __init__(self, iterable):
 self._iter = iter(iterable)
 def __next__(self): # note the Py3 interface
 return next(self._iter).upper()
 def __iter__(self):
 return self

On Python 3, as usual, this decorator does nothing.

Custom __str__ methods

If you define a custom __str__ method for any of your classes,
functions like print() expect __str__ on Py2 to return a byte
string, whereas on Py3 they expect a (unicode) string.

Use the following decorator to map the __str__ to __unicode__ on
Py2 and define __str__ to encode it as utf-8:

from future.utils import python_2_unicode_compatible

@python_2_unicode_compatible
class MyClass(object):
 def __str__(self):
 return u'Unicode string: \u5b54\u5b50'
a = MyClass()

This then prints the name of a Chinese philosopher:
print(a)

This decorator is identical to the decorator of the same name in
django.utils.encoding.

This decorator is a no-op on Python 3.

Notes

This module only supports Python 2.7, and Python 3.4+.

The following renames are already supported on Python 2.7 without any
additional work from us:

reload() -> imp.reload()
reduce() -> functools.reduce()
StringIO.StringIO -> io.StringIO
Bytes.BytesIO -> io.BytesIO

Old things that can one day be fixed automatically by futurize.py:

string.uppercase -> string.ascii_uppercase # works on either Py2.7 or Py3+
sys.maxint -> sys.maxsize # but this isn't identical

Developer docs

The easiest way to start developing python-future is as follows:

	Install Anaconda Python distribution

	Run:

conda install -n future2 python=2.7 pip
conda install -n future3 python=3.4 pip

git clone https://github.com/PythonCharmers/python-future

3. If you are using Anaconda Python distribution, this comes without a test
module on Python 2.x. Copy Python-2.7.6/Lib/test from the Python source tree
to ``~/anaconda/envs/yourenvname/lib/python2.7/site-packages/`.

dict

Python 3 dictionaries have .keys(), .values(), and .items()
methods which return memory-efficient set-like iterator objects, not lists.
(See PEP 3106 [http://www.python.org/dev/peps/pep-3106/].)

If your dictionaries are small, performance is not critical, and you don’t need
the set-like behaviour of iterator objects from Python 3, you can of course
stick with standard Python 3 code in your Py2/3 compatible codebase:

Assuming d is a native dict ...

for key in d:
 # code here

for item in d.items():
 # code here

for value in d.values():
 # code here

In this case there will be memory overhead of list creation on Py2 for each
call to items, values or keys.

For improved efficiency, future.builtins (aliased to builtins) provides
a Python 2 dict subclass whose keys(), values(), and
items() methods return iterators on all versions of Python >= 2.7. On
Python 2.7, these iterators also have the same set-like view behaviour as
dictionaries in Python 3. This can streamline code that iterates over large
dictionaries. For example:

from __future__ import print_function
from builtins import dict, range

Memory-efficient construction:
d = dict((i, i**2) for i in range(10**7))

assert not isinstance(d.items(), list)

Because items() is memory-efficient, so is this:
d2 = dict((v, k) for (k, v) in d.items())

As usual, on Python 3 dict imported from either builtins or
future.builtins is just the built-in dict class.

Memory-efficiency and alternatives

If you already have large native dictionaries, the downside to wrapping them in
a dict call is that memory is copied (on both Py3 and on Py2). For
example:

This allocates and then frees a large amount of temporary memory:
d = dict({i: i**2 for i in range(10**7)})

If dictionary methods like values and items are called only once, this
obviously negates the memory benefits offered by the overridden methods through
not creating temporary lists.

The memory-efficient (and CPU-efficient) alternatives are:

	to construct a dictionary from an iterator. The above line could use a
generator like this:

d = dict((i, i**2) for i in range(10**7))

	to construct an empty dictionary with a dict() call using
builtins.dict (rather than {}) and then update it;

	to use the viewitems etc. functions from future.utils, passing in
regular dictionaries:

from future.utils import viewkeys, viewvalues, viewitems

for (key, value) in viewitems(hugedictionary):
 # some code here

Set intersection:
d = {i**2: i for i in range(1000)}
both = viewkeys(d) & set(range(0, 1000, 7))

Set union:
both = viewvalues(d1) | viewvalues(d2)

For compatibility, the functions iteritems etc. are also available in
future.utils. These are equivalent to the functions of the same names in
six, which is equivalent to calling the iteritems etc. methods on
Python 2, or to calling items etc. on Python 3.

Function annotations

Function annotations are a piece of syntax introduced in Python 3.0 that was
not backported to Python 2.x. (See PEP 3107:
http://www.python.org/dev/peps/pep-3107/). They cause Python 2 to raise a
SyntaxError.

To rewrite Python 3 code with function annotations to be compatible with both
Python 3 and Python 2, you can replace the annotation syntax with a dictionary
called __annotations__ as an attribute on your functions. For example, code
such as this:

def _parse(self, filename: str, dir='.') -> list:
 pass

can be re-expressed like this:

def _parse(self, filename, dir='.'):
 pass
_parse.__annotations__ = {'filename': str, 'return': list}

As described in PEP 3107, the annotation for a function’s return value
corresponds to the 'return' key in the dictionary.

(Note that PEP 3107 describes annotations as belonging to a
func_annotations attribute. This attribute was renamed in Python 3.2 to
__annotations__.)

Be aware that some libraries that consume function annotations, such as
Reticulated [https://github.com/mvitousek/reticulated], have their own
semantics for supporting earlier Python versions, such as decorators. If you
are using such a library, please use its own mechanism for providing
compatibility with earlier Python versions, rather than the generic equivalent
above.

future.builtins

The future.builtins module is also accessible as builtins on Py2.

	pow() supports fractional exponents of negative numbers like in Py3:

>>> from builtins import pow
>>> pow(-1, 0.5)
(6.123233995736766e-17+1j)

	round() uses Banker’s Rounding as in Py3 to the nearest even last digit:

>>> from builtins import round
>>> assert round(0.1250, 2) == 0.12

futurize: Py2 to Py2/3

The futurize script passes Python 2 code through all the appropriate fixers
to turn it into valid Python 3 code, and then adds __future__ and
future package imports to re-enable compatibility with Python 2.

For example, running futurize turns this Python 2 code:

import ConfigParser # Py2 module name

class Upper(object):
 def __init__(self, iterable):
 self._iter = iter(iterable)
 def next(self): # Py2-style iterator interface
 return next(self._iter).upper()
 def __iter__(self):
 return self

itr = Upper('hello')
print next(itr),
for letter in itr:
 print letter, # Py2-style print statement

into this code which runs on both Py2 and Py3:

from __future__ import print_function
from future import standard_library
standard_library.install_aliases()
from future.builtins import next
from future.builtins import object
import configparser # Py3-style import

class Upper(object):
 def __init__(self, iterable):
 self._iter = iter(iterable)
 def __next__(self): # Py3-style iterator interface
 return next(self._iter).upper()
 def __iter__(self):
 return self

itr = Upper('hello')
print(next(itr), end=' ') # Py3-style print function
for letter in itr:
 print(letter, end=' ')

To write out all the changes to your Python files that futurize suggests,
use the -w flag.

For complex projects, it is probably best to divide the porting into two stages.
Stage 1 is for “safe” changes that modernize the code but do not break Python
2.7 compatibility or introduce a dependency on the future package. Stage 2
is to complete the process.

Stage 1: “safe” fixes

Run the first stage of the conversion process with:

futurize --stage1 mypackage/*.py

or, if you are using zsh, recursively:

futurize --stage1 mypackage/**/*.py

This applies fixes that modernize Python 2 code without changing the effect of
the code. With luck, this will not introduce any bugs into the code, or will at
least be trivial to fix. The changes are those that bring the Python code
up-to-date without breaking Py2 compatibility. The resulting code will be
modern Python 2.7-compatible code plus __future__ imports from the
following set:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Only those __future__ imports deemed necessary will be added unless
the --all-imports command-line option is passed to futurize, in
which case they are all added.

The from __future__ import unicode_literals declaration is not added
unless the --unicode-literals flag is passed to futurize.

The changes include:

- except MyException, e:
+ except MyException as e:

- print >>stderr, "Blah"
+ from __future__ import print_function
+ print("Blah", stderr)

- class MyClass:
+ class MyClass(object):

- def next(self):
+ def __next__(self):

- if d.has_key(key):
+ if key in d:

Implicit relative imports fixed, e.g.:

- import mymodule
+ from __future__ import absolute_import
+ from . import mymodule

Stage 1 does not add any imports from the future package. The output of
stage 1 will probably not (yet) run on Python 3.

The goal for this stage is to create most of the diff for the entire
porting process, but without introducing any bugs. It should be uncontroversial
and safe to apply to every Python 2 package. The subsequent patches introducing
Python 3 compatibility should then be shorter and easier to review.

The complete set of fixers applied by futurize --stage1 is:

lib2to3.fixes.fix_apply
lib2to3.fixes.fix_except
lib2to3.fixes.fix_exec
lib2to3.fixes.fix_exitfunc
lib2to3.fixes.fix_funcattrs
lib2to3.fixes.fix_has_key
lib2to3.fixes.fix_idioms
lib2to3.fixes.fix_intern
lib2to3.fixes.fix_isinstance
lib2to3.fixes.fix_methodattrs
lib2to3.fixes.fix_ne
lib2to3.fixes.fix_numliterals
lib2to3.fixes.fix_paren
lib2to3.fixes.fix_reduce
lib2to3.fixes.fix_renames
lib2to3.fixes.fix_repr
lib2to3.fixes.fix_standarderror
lib2to3.fixes.fix_sys_exc
lib2to3.fixes.fix_throw
lib2to3.fixes.fix_tuple_params
lib2to3.fixes.fix_types
lib2to3.fixes.fix_ws_comma
lib2to3.fixes.fix_xreadlines
libfuturize.fixes.fix_absolute_import
libfuturize.fixes.fix_next_call
libfuturize.fixes.fix_print_with_import
libfuturize.fixes.fix_raise

The following fixers from lib2to3 are not applied:

lib2to3.fixes.fix_import

The fix_absolute_import fixer in libfuturize.fixes is applied instead of
lib2to3.fixes.fix_import. The new fixer both makes implicit relative
imports explicit and adds the declaration from __future__ import
absolute_import at the top of each relevant module.

lib2to3.fixes.fix_next

The fix_next_call fixer in libfuturize.fixes is applied instead of
fix_next in stage 1. The new fixer changes any obj.next() calls to
next(obj), which is Py2/3 compatible, but doesn’t change any next method
names to __next__, which would break Py2 compatibility.

fix_next is applied in stage 2.

lib2to3.fixes.fix_print

The fix_print_with_import fixer in libfuturize.fixes changes the code to
use print as a function and also adds from __future__ import
print_function to the top of modules using print().

In addition, it avoids adding an extra set of parentheses if these already
exist. So print(x) does not become print((x)).

lib2to3.fixes.fix_raise

This fixer translates code to use the Python 3-only with_traceback()
method on exceptions.

lib2to3.fixes.fix_set_literal

This converts set([1, 2, 3]) to {1, 2, 3}.

lib2to3.fixes.fix_ws_comma

This performs cosmetic changes. This is not applied by default because it
does not serve to improve Python 2/3 compatibility. (In some cases it may
also reduce readability: see issue #58.)

Stage 2: Py3-style code with wrappers for Py2

Run stage 2 of the conversion process with:

futurize --stage2 myfolder/*.py

This stage adds a dependency on the future package. The goal for stage 2 is
to make further mostly safe changes to the Python 2 code to use Python 3-style
code that then still runs on Python 2 with the help of the appropriate builtins
and utilities in future.

For example:

name = raw_input('What is your name?\n')

for k, v in d.iteritems():
 assert isinstance(v, basestring)

class MyClass(object):
 def __unicode__(self):
 return u'My object'
 def __str__(self):
 return unicode(self).encode('utf-8')

would be converted by Stage 2 to this code:

from builtins import input
from builtins import str
from future.utils import iteritems, python_2_unicode_compatible

name = input('What is your name?\n')

for k, v in iteritems(d):
 assert isinstance(v, (str, bytes))

@python_2_unicode_compatible
class MyClass(object):
 def __str__(self):
 return u'My object'

Stage 2 also renames standard-library imports to their Py3 names and adds these
two lines:

from future import standard_library
standard_library.install_aliases()

For example:

import ConfigParser

becomes:

from future import standard_library
standard_library.install_aliases()
import configparser

The complete list of fixers applied in Stage 2 is:

lib2to3.fixes.fix_dict
lib2to3.fixes.fix_filter
lib2to3.fixes.fix_getcwdu
lib2to3.fixes.fix_input
lib2to3.fixes.fix_itertools
lib2to3.fixes.fix_itertools_imports
lib2to3.fixes.fix_long
lib2to3.fixes.fix_map
lib2to3.fixes.fix_next
lib2to3.fixes.fix_nonzero
lib2to3.fixes.fix_operator
lib2to3.fixes.fix_raw_input
lib2to3.fixes.fix_zip

libfuturize.fixes.fix_basestring
libfuturize.fixes.fix_cmp
libfuturize.fixes.fix_division_safe
libfuturize.fixes.fix_execfile
libfuturize.fixes.fix_future_builtins
libfuturize.fixes.fix_future_standard_library
libfuturize.fixes.fix_future_standard_library_urllib
libfuturize.fixes.fix_metaclass
libpasteurize.fixes.fix_newstyle
libfuturize.fixes.fix_object
libfuturize.fixes.fix_unicode_keep_u
libfuturize.fixes.fix_xrange_with_import

Not applied:

lib2to3.fixes.fix_buffer # Perhaps not safe. Test this.
lib2to3.fixes.fix_callable # Not needed in Py3.2+
lib2to3.fixes.fix_execfile # Some problems: see issue #37.
 # We use the custom libfuturize.fixes.fix_execfile instead.
lib2to3.fixes.fix_future # Removing __future__ imports is bad for Py2 compatibility!
lib2to3.fixes.fix_imports # Called by libfuturize.fixes.fix_future_standard_library
lib2to3.fixes.fix_imports2 # We don't handle this yet (dbm)
lib2to3.fixes.fix_metaclass # Causes SyntaxError in Py2! Use the one from ``six`` instead
lib2to3.fixes.fix_unicode # Strips off the u'' prefix, which removes a potentially
 # helpful source of information for disambiguating
 # unicode/byte strings.
lib2to3.fixes.fix_urllib # Included in libfuturize.fix_future_standard_library_urllib
lib2to3.fixes.fix_xrange # Custom one because of a bug with Py3.3's lib2to3

Separating text from bytes

After applying stage 2, the recommended step is to decide which of your Python
2 strings represent text and which represent binary data and to prefix all
string literals with either b or u accordingly. Furthermore, to ensure
that these types behave similarly on Python 2 as on Python 3, also wrap
byte-strings or text in the bytes and str types from future. For
example:

from builtins import bytes, str
b = bytes(b'\x00ABCD')
s = str(u'This is normal text')

Any unadorned string literals will then represent native platform strings
(byte-strings on Py2, unicode strings on Py3).

An alternative is to pass the --unicode-literals flag:

$ futurize --unicode-literals mypython2script.py

After running this, all string literals that were not explicitly marked up as
b'' will mean text (Python 3 str or Python 2 unicode).

Post-conversion

After running futurize, we recommend first running your tests on Python 3 and making further code changes until they pass on Python 3.

The next step would be manually tweaking the code to re-enable Python 2
compatibility with the help of the future package. For example, you can add
the @python_2_unicode_compatible decorator to any classes that define custom
__str__ methods. See What else you need to know for more info.

futurize quick-start guide

How to convert Py2 code to Py2/3 code using futurize:

Step 0: setup

Step 0 goal: set up and see the tests passing on Python 2 and failing on Python 3.

	Clone the package from github/bitbucket. Optionally rename your repo to package-future. Examples: reportlab-future, paramiko-future, mezzanine-future.

	Create and activate a Python 2 conda environment or virtualenv. Install the package with python setup.py install and run its test suite on Py2.7 (e.g. python setup.py test or py.test)

	Optionally: if there is a .travis.yml file, add Python version 3.6 and remove any versions < 2.6.

	Install Python 3 with e.g. sudo apt-get install python3. On other platforms, an easy way is to use Miniconda [http://repo.continuum.io/miniconda/index.html]. Then e.g.:

conda create -n py36 python=3.6 pip

Step 1: modern Py2 code

The goal for this step is to modernize the Python 2 code without introducing any dependencies (on future or e.g. six) at this stage.

1a. Install future into the virtualenv using:

pip install future

1b. Run futurize --stage1 -w *.py subdir1/*.py subdir2/*.py. Note that with
recursive globbing in bash or zsh, you can apply stage 1 to all source files
recursively with:

futurize --stage1 -w .

1c. Commit all changes

1d. Re-run the test suite on Py2 and fix any errors.

See Stage 1: “safe” fixes for more info.

Example error

One relatively common error after conversion is:

Traceback (most recent call last):
 ...
 File "/home/user/Install/BleedingEdge/reportlab/tests/test_encrypt.py", line 19, in <module>
 from .test_pdfencryption import parsedoc
ValueError: Attempted relative import in non-package

If you get this error, try adding an empty __init__.py file in the package
directory. (In this example, in the tests/ directory.) If this doesn’t help,
and if this message appears for all tests, they must be invoked differently
(from the cmd line or e.g. setup.py). The way to run a module inside a
package on Python 3, or on Python 2 with absolute_import in effect, is:

python -m tests.test_platypus_xref

(For more info, see PEP 328 [http://www.python.org/dev/peps/pep-0328/] and
the PEP 8 [http://www.python.org/dev/peps/pep-0008/] section on absolute
imports.)

Step 2: working Py3 code that still supports Py2

The goal for this step is to get the tests passing first on Py3 and then on Py2
again with the help of the future package.

2a. Run:

futurize --stage2 myfolder1/*.py myfolder2/*.py

You can view the stage 2 changes to all Python source files recursively with:

futurize --stage2 .

To apply the changes, add the -w argument.

This stage makes further conversions needed to support both Python 2 and 3.
These will likely require imports from future on Py2 (and sometimes on Py3),
such as:

from future import standard_library
standard_library.install_aliases()
...
from builtins import bytes
from builtins import open
from future.utils import with_metaclass

Optionally, you can use the --unicode-literals flag to add this import to
the top of each module:

from __future__ import unicode_literals

All strings in the module would then be unicode on Py2 (as on Py3) unless
explicitly marked with a b'' prefix.

If you would like futurize to import all the changed builtins to have their
Python 3 semantics on Python 2, invoke it like this:

futurize --stage2 --all-imports myfolder/*.py

2b. Re-run your tests on Py3 now. Make changes until your tests pass on Python 3.

2c. Commit your changes! :)

2d. Now run your tests on Python 2 and notice the errors. Add wrappers from
future to re-enable Python 2 compatibility. See the
Cheat Sheet: Writing Python 2-3 compatible code cheat sheet and What else you need to know for more info.

After each change, re-run the tests on Py3 and Py2 to ensure they pass on both.

2e. You’re done! Celebrate! Push your code and announce to the world! Hashtags
#python3 #python-future.

 The futurize script passes Python 2 code through all the appropriate fixers
to turn it into valid Python 3 code, and then adds __future__ and
future package imports to re-enable compatibility with Python 2.

For example, running futurize turns this Python 2 code:

import ConfigParser # Py2 module name

class Upper(object):
 def __init__(self, iterable):
 self._iter = iter(iterable)
 def next(self): # Py2-style iterator interface
 return next(self._iter).upper()
 def __iter__(self):
 return self

itr = Upper('hello')
print next(itr),
for letter in itr:
 print letter, # Py2-style print statement

into this code which runs on both Py2 and Py3:

from __future__ import print_function
from future import standard_library
standard_library.install_aliases()
from future.builtins import next
from future.builtins import object
import configparser # Py3-style import

class Upper(object):
 def __init__(self, iterable):
 self._iter = iter(iterable)
 def __next__(self): # Py3-style iterator interface
 return next(self._iter).upper()
 def __iter__(self):
 return self

itr = Upper('hello')
print(next(itr), end=' ') # Py3-style print function
for letter in itr:
 print(letter, end=' ')

To write out all the changes to your Python files that futurize suggests,
use the -w flag.

For complex projects, it is probably best to divide the porting into two stages.
Stage 1 is for “safe” changes that modernize the code but do not break Python
2.7 compatibility or introduce a dependency on the future package. Stage 2
is to complete the process.

 In a perfect world, the new metaclass syntax should ideally be available in
Python 2 as a __future__` import like from __future__ import
new_metaclass_syntax.

int

Python 3’s int type is very similar to Python 2’s long, except
for the representation (which omits the L suffix in Python 2). Python
2’s usual (short) integers have been removed from Python 3, as has the
long builtin name.

Python 3:

>>> 2**64
18446744073709551616

Python 2:

>>> 2**64
18446744073709551616L

future includes a backport of Python 3’s int that
is a subclass of Python 2’s long with the same representation
behaviour as Python 3’s int. To ensure an integer is long compatibly with
both Py3 and Py2, cast it like this:

>>> from builtins import int
>>> must_be_a_long_integer = int(1234)

The backported int object helps with writing doctests and simplifies code
that deals with long and int as special cases on Py2. An example is the
following code from xlwt-future (called by the xlwt.antlr.BitSet class)
for writing out Excel .xls spreadsheets. With future, the code is:

from builtins import int

def longify(data):
 """
 Turns data (an int or long, or a list of ints or longs) into a
 list of longs.
 """
 if not data:
 return [int(0)]
 if not isinstance(data, list):
 return [int(data)]
 return list(map(int, data))

Without future (or with future < 0.7), this might be:

def longify(data):
 """
 Turns data (an int or long, or a list of ints or longs) into a
 list of longs.
 """
 if not data:
 if PY3:
 return [0]
 else:
 return [long(0)]
 if not isinstance(data,list):
 if PY3:
 return [int(data)]
 else:
 return [long(data)]
 if PY3:
 return list(map(int, data)) # same as returning data, but with up-front typechecking
 else:
 return list(map(long, data))

isinstance

The following tests all pass on Python 3:

>>> assert isinstance(2**62, int)
>>> assert isinstance(2**63, int)
>>> assert isinstance(b'my byte-string', bytes)
>>> assert isinstance(u'unicode string 1', str)
>>> assert isinstance('unicode string 2', str)

However, two of these normally fail on Python 2:

>>> assert isinstance(2**63, int)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AssertionError

>>> assert isinstance(u'my unicode string', str)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AssertionError

And if this import is in effect on Python 2:

>>> from __future__ import unicode_literals

then the fifth test fails too:

>>> assert isinstance('unicode string 2', str)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AssertionError

After importing the builtins from future, all these tests pass on
Python 2 as on Python 3:

>>> from builtins import bytes, int, str

>>> assert isinstance(10, int)
>>> assert isinstance(10**100, int)
>>> assert isinstance(b'my byte-string', bytes)
>>> assert isinstance(u'unicode string 1', str)

However, note that the last test requires that unicode_literals be imported to succeed.:

>>> from __future__ import unicode_literals
>>> assert isinstance('unicode string 2', str)

This works because the backported types int, bytes and str
(and others) have metaclasses that override __instancecheck__. See PEP 3119 [http://www.python.org/dev/peps/pep-3119/#overloading-isinstance-and-issubclass]
for details.

Passing data to/from Python 2 libraries

If you are passing any of the backported types (bytes, int, dict,
``str) into brittle library code that performs type-checks using type(),
rather than isinstance(), or requires that you pass Python 2’s native types
(rather than subclasses) for some other reason, it may be necessary to upcast
the types from future to their native superclasses on Py2.

The native function in future.utils is provided for this. Here is how
to use it. (The output showing is from Py2):

>>> from builtins import int, bytes, str
>>> from future.utils import native

>>> a = int(10**20) # Py3-like long int
>>> a
100000000000000000000
>>> type(a)
future.types.newint.newint
>>> native(a)
100000000000000000000L
>>> type(native(a))
long

>>> b = bytes(b'ABC')
>>> type(b)
future.types.newbytes.newbytes
>>> native(b)
'ABC'
>>> type(native(b))
str

>>> s = str(u'ABC')
>>> type(s)
future.types.newstr.newstr
>>> native(s)
u'ABC'
>>> type(native(s))
unicode

On Py3, the native() function is a no-op.

Native string type

Some library code, include standard library code like the array.array()
constructor, require native strings on Python 2 and Python 3. This means that
there is no simple way to pass the appropriate string type when the
unicode_literals import from __future__ is in effect.

The objects native_str and native_bytes are available in
future.utils for this case. These are equivalent to the str and
bytes objects in __builtin__ on Python 2 or in builtins on Python 3.

The functions native_str_to_bytes and bytes_to_native_str are also
available for more explicit conversions.

limitations of the future module and differences between Py2 and Py3 that are not (yet) handled

The following attributes on functions in Python 3 are not provided in Python
2.7:

__func__: see six.get_method_function()
__self__: see six.get_method_self()
__self__.__class__

Limitations of the futurize script

The futurize script is not yet mature; like 2to3, on which it is based,
it makes mistakes. Nevertheless, it should be useful for automatically
performing a lot of the repetitive code-substitution tasks when porting from
Py2 to Py2/3.

Some new Python 3.3 features that cause SyntaxErrors on earlier versions
are not currently handled by the futurize script. This includes:

	yield ... from syntax for generators in Py3.3

	raise ... from syntax for exceptions. (This is simple to fix
manually by creating a temporary variable.)

Also:

	Usage of file('myfile', 'w') as a synonym for open doesn’t seem
to be converted currently.

	isinstance(var, basestring) should sometimes be converted to
isinstance(var, str) or isinstance(var, bytes), or sometimes simply
isinstance(var, str), depending on the context. Currently it is always
converted to isinstance(var, str).

	Caveats with bytes indexing!:

b'\x00'[0] != 0
b'\x01'[0] != 1

futurize does not yet wrap all byte-string literals in a bytes()
call. This is on the to-do list. See bytes for more information.

Notes

	Ensure you are using new-style classes on Py2. Py3 doesn’t require
inheritance from object for this, but Py2 does. pasteurize
adds this back in automatically, but ensure you do this too
when writing your classes, otherwise weird breakage when e.g. calling
super() may occur.

Metaclasses

Python 3 and Python 2 syntax for metaclasses are incompatible.
future provides a function (from jinja2/_compat.py) called
with_metaclass() that can assist with specifying metaclasses
portably across Py3 and Py2. Use it like this:

from future.utils import with_metaclass

class BaseForm(object):
 pass

class FormType(type):
 pass

class Form(with_metaclass(FormType, BaseForm)):
 pass

open()

The Python 3 builtin open() [https://docs.python.org/3/library/functions.html#open] function for opening files returns file
contents as (unicode) strings unless the binary (b) flag is passed, as in:

open(filename, 'rb')

in which case its methods like read() return Py3 bytes [https://docs.python.org/3/library/stdtypes.html#bytes] objects.

On Py2 with future installed, the builtins [https://docs.python.org/3/library/builtins.html#module-builtins] module provides an
open function that is mostly compatible with that on Python 3 (e.g. it
offers keyword arguments like encoding). This maps to the open backport
available in the standard library io [https://docs.python.org/3/library/io.html#module-io] module on Py2.7.

One difference to be aware of between the Python 3 open and
future.builtins.open on Python 2 is that the return types of methods such
as read() from the file object that open returns are not
automatically cast from native bytes or unicode strings on Python 2 to the
corresponding future.builtins.bytes or future.builtins.str types. If you
need the returned data to behave the exactly same way on Py2 as on Py3, you can
cast it explicitly as follows:

from __future__ import unicode_literals
from builtins import open, bytes

data = open('image.png', 'rb').read()
On Py2, data is a standard 8-bit str with loose Unicode coercion.
data + u'' would likely raise a UnicodeDecodeError

data = bytes(data)
Now it behaves like a Py3 bytes object...

assert data[:4] == b'\x89PNG'
assert data[4] == 13 # integer
Raises TypeError:
data + u''

pasteurize: Py3 to Py2/3

Running pasteurize -w mypy3module.py turns this Python 3 code:

import configparser
import copyreg

class Blah:
 pass
print('Hello', end=None)

into this code which runs on both Py2 and Py3:

from __future__ import print_function
from future import standard_library
standard_library.install_hooks()

import configparser
import copyreg

class Blah(object):
 pass
print('Hello', end=None)

Notice that both futurize and pasteurize create explicit new-style
classes that inherit from object on both Python versions, and both
refer to stdlib modules (as well as builtins) under their Py3 names.

Note also that the configparser module is a special case; there is a full
backport available on PyPI (https://pypi.org/project/configparser/), so, as
of v0.16.0, python-future no longer provides a configparser package
alias. To use the resulting code on Py2, install the configparser backport
with pip install configparser or by adding it to your requirements.txt
file.

pasteurize also handles the following Python 3 features:

	keyword-only arguments

	metaclasses (using with_metaclass())

	extended tuple unpacking (PEP 3132)

To handle function annotations (PEP 3107), see Function annotations.

Development roadmap

futurize script

	“Safe” mode – from Py2 to modern Py2 or Py3 to more-compatible Py3

	Split the fixers into two categories: safe and bold

	Safe is highly unlikely to break existing Py2 or Py3 support. The
output of this still requires future imports. Examples:

	Compatible metaclass syntax on Py3

	Explicit inheritance from object on Py3

	Bold might make assumptions about which strings on Py2 should be
unicode strings and which should be bytestrings.

	We should also build up a database of which standard library
interfaces on Py2 and Py3 accept unicode strings versus
byte-strings, which have changed, and which haven’t.

	Windows support

future package

	[Done] Add more tests for bytes … preferably all from test_bytes.py in Py3.3.

	[Done] Add remove_hooks() and install_hooks() as functions in the
future.standard_library module. (See the uprefix module for how
to do this.)

Experimental:
- Add:

from future import bytes_literals
from future import new_metaclass_syntax
from future import new_style_classes

	[Done] Maybe:

from future.builtins import str

should import a custom str is a Py3 str-like object which inherits from unicode and
removes the decode() method and has any other Py3-like behaviours
(possibly stricter casting?)

Standard library imports

future supports the standard library reorganization (PEP 3108) through
several mechanisms.

Direct imports

As of version 0.14, the future package comes with top-level packages for
Python 2.x that provide access to the reorganized standard library modules
under their Python 3.x names.

Direct imports are the preferred mechanism for accesing the renamed standard
library modules in Python 2/3 compatible code. For example, the following clean
Python 3 code runs unchanged on Python 2 after installing future:

>>> # Alias for future.builtins on Py2:
>>> from builtins import str, open, range, dict

>>> # Top-level packages with Py3 names provided on Py2:
>>> import queue
>>> import tkinter.dialog
>>> etc.

Notice that this code actually runs on Python 3 without the presence of the
future package.

Of the 44 modules that were refactored with PEP 3108 (standard library
reorganization), 29 are supported with direct imports in the above manner. The
complete list is here:

Renamed modules:

import builtins

import copyreg

import html
import html.entities
import html.parser

import http.client
import http.cookies
import http.cookiejar
import http.server

import queue

import reprlib

import socketserver

from tkinter import colorchooser
from tkinter import commondialog
from tkinter import constants
from tkinter import dialog
from tkinter import dnd
from tkinter import filedialog
from tkinter import font
from tkinter import messagebox
from tkinter import scrolledtext
from tkinter import simpledialog
from tkinter import tix
from tkinter import ttk

import winreg # Windows only

import xmlrpc.client
import xmlrpc.server

import _dummy_thread
import _markupbase
import _thread

Note that, as of v0.16.0, python-future no longer includes an alias for the
configparser module because a full backport exists (see https://pypi.org/project/configparser/).

Aliased imports

The following 14 modules were refactored or extended from Python 2.7 to 3.x
but were neither renamed in Py3.x nor were the new APIs backported to Py2.x.
This precludes compatibility interfaces that work out-of-the-box. Instead, the
future package makes the Python 3.x APIs available on Python 2.x as
follows:

from future.standard_library import install_aliases
install_aliases()

from collections import UserDict, UserList, UserString

import urllib.parse
import urllib.request
import urllib.response
import urllib.robotparser
import urllib.error

import dbm
import dbm.dumb
import dbm.gnu # requires Python dbm support
import dbm.ndbm # requires Python dbm support

from itertools import filterfalse, zip_longest

from subprocess import getoutput, getstatusoutput

from sys import intern

import test.support

The newly exposed urllib submodules are backports of those from Py3.x.
This means, for example, that urllib.parse.unquote() now exists and takes
an optional encoding argument on Py2.x as it does on Py3.x.

Limitation: Note that the http-based backports do not currently support
HTTPS (as of 2015-09-11) because the SSL support changed considerably in Python
3.x. If you need HTTPS support, please use this idiom for now:

from future.moves.urllib.request import urlopen

Backports also exist of the following features from Python 3.4:

	math.ceil returns an int on Py3

	collections.ChainMap (for 2.7)

	reprlib.recursive_repr (for 2.7)

These can then be imported on Python 2.7+ as follows:

from future.standard_library import install_aliases
install_aliases()

from math import ceil # now returns an int
from collections import ChainMap
from reprlib import recursive_repr

External standard-library backports

Backports of the following modules from the Python 3.x standard library are
available independently of the python-future project:

import enum # pip install enum34
import singledispatch # pip install singledispatch
import pathlib # pip install pathlib

A few modules from Python 3.4 are also available in the backports
package namespace after pip install backports.lzma etc.:

from backports import lzma
from backports import functools_lru_cache as lru_cache

Included full backports

Alpha-quality full backports of the following modules from Python 3.3’s
standard library to Python 2.x are also available in future.backports:

http.client
http.server
html.entities
html.parser
urllib
xmlrpc.client
xmlrpc.server

The goal for these modules, unlike the modules in the future.moves package
or top-level namespace, is to backport new functionality introduced in Python
3.3.

If you need the full backport of one of these packages, please open an issue here [https://github.com/PythonCharmers/python-future].

str

The str [https://docs.python.org/3/library/stdtypes.html#str] object in Python 3 is quite similar but not identical to the
Python 2 unicode object.

The major difference is the stricter type-checking of Py3’s str that
enforces a distinction between unicode strings and byte-strings, such as when
comparing, concatenating, joining, or replacing parts of strings.

There are also other differences, such as the repr of unicode strings in
Py2 having a u'...' prefix, versus simply '...', and the removal of
the str.decode() method in Py3.

future contains a newstr type that is a backport of the
str object from Python 3. This inherits from the Python 2
unicode class but has customizations to improve compatibility with
Python 3’s str [https://docs.python.org/3/library/stdtypes.html#str] object. You can use it as follows:

>>> from __future__ import unicode_literals
>>> from builtins import str

On Py2, this gives us:

>>> str
future.types.newstr.newstr

(On Py3, it is simply the usual builtin str [https://docs.python.org/3/library/stdtypes.html#str] object.)

Then, for example, the following code has the same effect on Py2 as on Py3:

>>> s = str(u'ABCD')
>>> assert s != b'ABCD'
>>> assert isinstance(s.encode('utf-8'), bytes)
>>> assert isinstance(b.decode('utf-8'), str)

These raise TypeErrors:

>>> bytes(b'B') in s
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'in <string>' requires string as left operand, not <type 'str'>

>>> s.find(bytes(b'A'))
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: argument can't be <type 'str'>

Various other operations that mix strings and bytes or other types are
permitted on Py2 with the newstr class even though they
are illegal with Python 3. For example:

>>> s2 = b'/' + str('ABCD')
>>> s2
'/ABCD'
>>> type(s2)
future.types.newstr.newstr

This is allowed for compatibility with parts of the Python 2 standard
library and various third-party libraries that mix byte-strings and unicode
strings loosely. One example is os.path.join on Python 2, which
attempts to add the byte-string b'/' to its arguments, whether or not
they are unicode. (See posixpath.py.) Another example is the
escape() function in Django 1.4’s django.utils.html.

In most other ways, these builtins.str objects on Py2 have the
same behaviours as Python 3’s str [https://docs.python.org/3/library/stdtypes.html#str]:

>>> s = str('ABCD')
>>> assert repr(s) == 'ABCD' # consistent repr with Py3 (no u prefix)
>>> assert list(s) == ['A', 'B', 'C', 'D']
>>> assert s.split('B') == ['A', 'CD']

The str [https://docs.python.org/3/library/stdtypes.html#str] type from builtins [https://docs.python.org/3/library/builtins.html#module-builtins] also provides support for the
surrogateescape error handler on Python 2.x. Here is an example that works
identically on Python 2.x and 3.x:

>>> from builtins import str
>>> s = str(u'\udcff')
>>> s.encode('utf-8', 'surrogateescape')
b'\xff'

This feature is in alpha. Please leave feedback here [https://github.com/PythonCharmers/python-future/issues] about whether this
works for you.

Using Python 2-only dependencies on Python 3

The past module provides an experimental translation package to help
with importing and using old Python 2 modules in a Python 3 environment.

This is implemented using PEP 414 import hooks together with fixers from
lib2to3 and libfuturize (included with python-future) that
attempt to automatically translate Python 2 code to Python 3 code with equivalent
semantics upon import.

Note This feature is still in alpha and needs further development to support a
full range of real-world Python 2 modules. Also be aware that the API for
this package might change considerably in later versions.

Here is how to use it:

$ pip3 install plotrique==0.2.5-7 --no-compile # to ignore SyntaxErrors
$ python3

Then pass in a whitelist of module name prefixes to the
past.translation.autotranslate() function. Example:

>>> from past.translation import autotranslate
>>> autotranslate(['plotrique'])
>>> import plotrique

Here is another example:

>>> from past.translation import install_hooks, remove_hooks
>>> install_hooks(['mypy2module'])
>>> import mypy2module
>>> remove_hooks()

This will translate, import and run Python 2 code such as the following:

File: mypy2module.py

Print statements are translated transparently to functions:
print 'Hello from a print statement'

xrange() is translated to Py3's range():
total = 0
for i in xrange(10):
 total += i
print 'Total is: %d' % total

Dictionary methods like .keys() and .items() are supported and
return lists as on Python 2:
d = {'a': 1, 'b': 2}
assert d.keys() == ['a', 'b']
assert isinstance(d.items(), list)

Functions like range, reduce, map, filter also return lists:
assert isinstance(range(10), list)

The exec statement is supported:
exec 'total += 1'
print 'Total is now: %d' % total

Long integers are supported:
k = 1234983424324L
print 'k + 1 = %d' % k

Most renamed standard library modules are supported:
import ConfigParser
import HTMLParser
import urllib

The attributes of the module are then accessible normally from Python 3.
For example:

This Python 3 code works
>>> type(mypy2module.d)
builtins.dict

This is a standard Python 3 data type, so, when called from Python 3 code,
keys() returns a view, not a list:

>>> type(mypy2module.d.keys())
builtins.dict_keys

Known limitations of past.translation

	It currently requires a newline at the end of the module or it throws a
ParseError.

	This only works with pure-Python modules. C extension modules and Cython code
are not supported.

	The biggest hurdle to automatic translation is likely to be ambiguity
about byte-strings and text (unicode strings) in the Python 2 code. If the
past.autotranslate feature fails because of this, you could try
running futurize over the code and adding a b'' or u'' prefix to
the relevant string literals. To convert between byte-strings and text (unicode
strings), add an .encode or .decode method call. If this succeeds,
please push your patches upstream to the package maintainers.

	Otherwise, the source translation feature offered by the past.translation
package has similar limitations to the futurize script (see
Known limitations). Help developing and testing this feature further
would be particularly welcome.

Please report any bugs you find on the python-future bug tracker [https://github.com/PythonCharmers/python-future/].

Should I import unicode_literals?

The future package can be used with or without unicode_literals
imports.

In general, it is more compelling to use unicode_literals when
back-porting new or existing Python 3 code to Python 2/3 than when porting
existing Python 2 code to 2/3. In the latter case, explicitly marking up all
unicode string literals with u'' prefixes would help to avoid
unintentionally changing the existing Python 2 API. However, if changing the
existing Python 2 API is not a concern, using unicode_literals may speed up
the porting process.

This section summarizes the benefits and drawbacks of using
unicode_literals. To avoid confusion, we recommend using
unicode_literals everywhere across a code-base or not at all, instead of
turning on for only some modules.

Benefits

	String literals are unicode on Python 3. Making them unicode on Python 2
leads to more consistency of your string types across the two
runtimes. This can make it easier to understand and debug your code.

	Code without u'' prefixes is cleaner, one of the claimed advantages
of Python 3. Even though some unicode strings would require a function
call to invert them to native strings for some Python 2 APIs (see
Standard library incompatibilities), the incidence of these function calls
would usually be much lower than the incidence of u'' prefixes for text
strings in the absence of unicode_literals.

	The diff when porting to a Python 2/3-compatible codebase may be smaller,
less noisy, and easier to review with unicode_literals than if an
explicit u'' prefix is added to every unadorned string literal.

	If support for Python 3.2 is required (e.g. for Ubuntu 12.04 LTS or
Debian wheezy), u'' prefixes are a SyntaxError, making
unicode_literals the only option for a Python 2/3 compatible
codebase. [However, note that future doesn’t support Python 3.0-3.2.]

Drawbacks

	Adding unicode_literals to a module amounts to a “global flag day” for
that module, changing the data types of all strings in the module at once.
Cautious developers may prefer an incremental approach. (See
here [http://lwn.net/Articles/165039/] for an excellent article
describing the superiority of an incremental patch-set in the the case
of the Linux kernel.)

	Changing to unicode_literals will likely introduce regressions on
Python 2 that require an initial investment of time to find and fix. The
APIs may be changed in subtle ways that are not immediately obvious.

An example on Python 2:

Module: mypaths.py

...
def unix_style_path(path):
 return path.replace('\\', '/')
...

User code:

>>> path1 = '\\Users\\Ed'
>>> unix_style_path(path1)
'/Users/ed'

On Python 2, adding a unicode_literals import to mypaths.py would
change the return type of the unix_style_path function from str to
unicode in the user code, which is difficult to anticipate and probably
unintended.

The counter-argument is that this code is broken, in a portability
sense; we see this from Python 3 raising a TypeError upon passing the
function a byte-string. The code needs to be changed to make explicit
whether the path argument is to be a byte string or a unicode string.

	With unicode_literals in effect, there is no way to specify a native
string literal (str type on both platforms). This can be worked around as follows:

>>> from __future__ import unicode_literals
>>> ...
>>> from future.utils import bytes_to_native_str as n

>>> s = n(b'ABCD')
>>> s
'ABCD' # on both Py2 and Py3

although this incurs a performance penalty (a function call and, on Py3,
a decode method call.)

This is a little awkward because various Python library APIs (standard
and non-standard) require a native string to be passed on both Py2
and Py3. (See Standard library incompatibilities for some examples. WSGI
dictionaries are another.)

	If a codebase already explicitly marks up all text with u'' prefixes,
and if support for Python versions 3.0-3.2 can be dropped, then
removing the existing u'' prefixes and replacing these with
unicode_literals imports (the porting approach Django used) would
introduce more noise into the patch and make it more difficult to review.
However, note that the futurize script takes advantage of PEP 414 and
does not remove explicit u'' prefixes that already exist.

	Turning on unicode_literals converts even docstrings to unicode, but
Pydoc breaks with unicode docstrings containing non-ASCII characters for
Python versions < 2.7.7. (Fix
committed [http://bugs.python.org/issue1065986#msg207403] in Jan 2014.):

>>> def f():
... u"Author: Martin von Löwis"

>>> help(f)

/Users/schofield/Install/anaconda/python.app/Contents/lib/python2.7/pydoc.pyc in pipepager(text, cmd)
 1376 pipe = os.popen(cmd, 'w')
 1377 try:
-> 1378 pipe.write(text)
 1379 pipe.close()
 1380 except IOError:

UnicodeEncodeError: 'ascii' codec can't encode character u'\xf6' in position 71: ordinal not in range(128)

See this Stack Overflow thread [http://stackoverflow.com/questions/809796/any-gotchas-using-unicode-literals-in-python-2-6]
for other gotchas.

Others’ perspectives

In favour of unicode_literals

Django recommends importing unicode_literals as its top porting tip [https://docs.djangoproject.com/en/1.11/topics/python3/#unicode-literals] for
migrating Django extension modules to Python 3. The following quote [https://groups.google.com/forum/#!topic/django-developers/2ddIWdicbNY] is
from Aymeric Augustin on 23 August 2012 regarding why he chose
unicode_literals for the port of Django to a Python 2/3-compatible
codebase.:

“… I’d like to explain why this PEP [PEP 414, which allows explicit
u'' prefixes for unicode literals on Python 3.3+] is at odds with
the porting philosophy I’ve applied to Django, and why I would have
vetoed taking advantage of it.

“I believe that aiming for a Python 2 codebase with Python 3
compatibility hacks is a counter-productive way to port a project. You
end up with all the drawbacks of Python 2 (including the legacy u
prefixes) and none of the advantages Python 3 (especially the sane
string handling).

“Working to write Python 3 code, with legacy compatibility for Python
2, is much more rewarding. Of course it takes more effort, but the
results are much cleaner and much more maintainable. It’s really about
looking towards the future or towards the past.

“I understand the reasons why PEP 414 was proposed and why it was
accepted. It makes sense for legacy software that is minimally
maintained. I hope nobody puts Django in this category!”

Against unicode_literals

“There are so many subtle problems that unicode_literals causes.
For instance lots of people accidentally introduce unicode into
filenames and that seems to work, until they are using it on a system
where there are unicode characters in the filesystem path.”

—Armin Ronacher

“+1 from me for avoiding the unicode_literals future, as it can have
very strange side effects in Python 2…. This is one of the key
reasons I backed Armin’s PEP 414.”

—Nick Coghlan

“Yeah, one of the nuisances of the WSGI spec is that the header values
IIRC are the str or StringType on both py2 and py3. With
unicode_literals this causes hard-to-spot bugs, as some WSGI servers
might be more tolerant than others, but usually using unicode in python
2 for WSGI headers will cause the response to fail.”

—Antti Haapala

Upgrading

We strive to support compatibility between versions of python-future. Part of this involves keeping around old interfaces and marking them as deprecated for a period to allow projects to transition in a straightforward manner to using the new interfaces.

Upgrading to v0.12

Utilities

future also provides some useful functions and decorators to ease
backward compatibility with Py2 in the future.utils and
past.utils modules. These are a selection of the most useful functions
from six and various home-grown Py2/3 compatibility modules from popular
Python projects, such as Jinja2, Pandas, IPython, and Django. The goal is to
consolidate these in one place, tested and documented, obviating the need for
every project to repeat this work.

Examples:

Functions like print() expect __str__ on Py2 to return a byte
string. This decorator maps the __str__ to __unicode__ on Py2 and
defines __str__ to encode it as utf-8:

from future.utils import python_2_unicode_compatible

@python_2_unicode_compatible
class MyClass(object):
 def __str__(self):
 return u'Unicode string: \u5b54\u5b50'
a = MyClass()

This then prints the Chinese characters for Confucius:
print(a)

Iterators on Py3 require a __next__() method, whereas on Py2 this
is called next(). This decorator allows Py3-style iterators to work
identically on Py2:

@implements_iterator
class Upper(object):
 def __init__(self, iterable):
 self._iter = iter(iterable)
 def __next__(self): # note the Py3 interface
 return next(self._iter).upper()
 def __iter__(self):
 return self

print(list(Upper('hello')))
prints ['H', 'E', 'L', 'L', 'O']

On Python 3 these decorators are no-ops.

Why Python 3?

	Python 2.7 is the final Python 2.x release. Python 3.x is the future.
The Python ecosystem needs to consolidate. A split or schism between
different incompatible versions is not healthy for growing the
community.

	Function annotations

	Decimal module 100x faster. As fast as floats.

	Easier to learn. (Less cruft in language and stdlib, more consistency, better docstrings, etc.)

	Much safer handling of unicode text and encodings: fewer bugs.

	More memory efficiency (shared dict keys (PEP 412) and space-efficient
Unicode representation (PEP 393))

	Exception chaining

Why are Unicode strings better on Python 3?

	it is not the default string type (you have to prefix the string
with a u to get Unicode);

	it is missing some functionality, e.g. casefold;

	there are two distinct implementations, narrow builds and wide builds;

	wide builds take up to four times more memory per string as needed;

	narrow builds take up to two times more memory per string as needed;

	worse, narrow builds have very naive (possibly even “broken”)
handling of code points in the Supplementary Multilingual Planes.

The unicode string type in Python 3 is better because:

	it is the default string type;

	it includes more functionality;

	starting in Python 3.3, it gets rid of the distinction between
narrow and wide builds;

	which reduces the memory overhead of strings by up to a factor
of four in many cases;

	and fixes the issue of SMP code points.

(quote from a mailing list post by Steve D’Aprano on 2014-01-17).

New features

Standard library:

	SSL contexts in http.client

	

Non-arguments for Python 3

	

 _static/python-future-logo-textless-transparent.png

_static/python-future-logo.png
p4
.-:{

puthon-future

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Easy, clean, reliable Python 2/3 compatibility

 		
 What’s New

 		
 What’s new in version 0.18.2 (2019-10-30)

 		
 What’s new in version 0.18.1 (2019-10-09)

 		
 What’s new in version 0.18.0 (2019-10-09)

 		
 What’s new in version 0.17.1 (2018-10-30)

 		
 What’s new in version 0.17.0 (2018-10-19)

 		
 What’s new in version 0.16.0 (2016-10-27)

 		
 What’s new in version 0.15.2 (2015-09-11)

 		
 What’s new in version 0.15.1 (2015-09-09)

 		
 What’s new in version 0.15.0 (2015-07-25)

 		
 Previous versions

 		
 Overview: Easy, clean, reliable Python 2/3 compatibility

 		
 Features

 		
 Code examples

 		
 Automatic conversion to Py2/3-compatible code

 		
 Futurize: 2 to both

 		
 Automatic translation

 		
 Pre-commit hooks

 		
 Licensing

 		
 Next steps

 		
 Quick-start guide

 		
 Installation

 		
 If you are writing code from scratch

 		
 To convert existing Python 3 code

 		
 To convert existing Python 2 code

 		
 Standard library reorganization

 		
 Python 2-only dependencies

 		
 Next steps

 		
 Cheat Sheet: Writing Python 2-3 compatible code

 		
 Setup

 		
 Essential syntax differences

 		
 print

 		
 Raising exceptions

 		
 Catching exceptions

 		
 Division

 		
 Long integers

 		
 Octal constants

 		
 Backtick repr

 		
 Metaclasses

 		
 Strings and bytes

 		
 Unicode (text) string literals

 		
 Byte-string literals

 		
 basestring

 		
 unicode

 		
 StringIO

 		
 Imports relative to a package

 		
 Dictionaries

 		
 Iterating through dict keys/values/items

 		
 dict keys/values/items as a list

 		
 Custom class behaviour

 		
 Custom iterators

 		
 Custom __str__ methods

 		
 Custom __nonzero__ vs __bool__ method:

 		
 Lists versus iterators

 		
 xrange

 		
 range

 		
 map

 		
 imap

 		
 zip, izip

 		
 filter, ifilter

 		
 Other builtins

 		
 File IO with open()

 		
 reduce()

 		
 raw_input()

 		
 input()

 		
 file()

 		
 exec

 		
 execfile()

 		
 unichr()

 		
 intern()

 		
 apply()

 		
 chr()

 		
 cmp()

 		
 reload()

 		
 Standard library

 		
 dbm modules

 		
 commands / subprocess modules

 		
 StringIO module

 		
 http module

 		
 xmlrpc module

 		
 html escaping and entities

 		
 html parsing

 		
 urllib module

 		
 Tkinter

 		
 socketserver

 		
 copy_reg, copyreg

 		
 configparser

 		
 queue

 		
 repr, reprlib

 		
 UserDict, UserList, UserString

 		
 itertools: filterfalse, zip_longest

 		
 Imports

 		
 __future__ imports

 		
 Imports of builtins

 		
 Implicit imports

 		
 Explicit imports

 		
 Standard library imports

 		
 Direct imports

 		
 Aliased imports

 		
 External standard-library backports

 		
 Included full backports

 		
 Using Python 2-only dependencies on Python 3

 		
 Should I import unicode_literals?

 		
 Benefits

 		
 Drawbacks

 		
 Others’ perspectives

 		
 Next steps

 		
 What else you need to know

 		
 bytes

 		
 str

 		
 dict

 		
 Memory-efficiency and alternatives

 		
 int

 		
 isinstance

 		
 Passing data to/from Python 2 libraries

 		
 Native string type

 		
 open()

 		
 Custom __str__ methods

 		
 Custom iterators

 		
 Binding a method to a class

 		
 Metaclasses

 		
 Automatic conversion to Py2/3

 		
 futurize: Py2 to Py2/3

 		
 Stage 1: “safe” fixes

 		
 Stage 2: Py3-style code with wrappers for Py2

 		
 Separating text from bytes

 		
 Post-conversion

 		
 futurize quick-start guide

 		
 Step 0: setup

 		
 Step 1: modern Py2 code

 		
 Step 2: working Py3 code that still supports Py2

 		
 pasteurize: Py3 to Py2/3

 		
 Known limitations

 		
 Frequently Asked Questions (FAQ)

 		
 Who is this for?

 		
 Why upgrade to Python 3?

 		
 Porting philosophy

 		
 Why write Python 3-style code?

 		
 Can’t I just roll my own Py2/3 compatibility layer?

 		
 What inspired this project?

 		
 Maturity

 		
 How well has it been tested?

 		
 Is the API stable?

 		
 Relationship between python-future and other compatibility tools

 		
 How does this relate to 2to3?

 		
 Can I maintain a Python 2 codebase and use 2to3 to automatically convert to Python 3 in the setup script?

 		
 What is the relationship between future and six?

 		
 What is the relationship between python-future and python-modernize?

 		
 Platform and version support

 		
 Which versions of Python does python-future support?

 		
 Support

 		
 Is there a mailing list?

 		
 Contributing

 		
 Can I help?

 		
 Where is the repo?

 		
 Standard library incompatibilities

 		
 array.array()

 		
 array.array.read()

 		
 base64.decodebytes() and base64.encodebytes()

 		
 re.ASCII

 		
 struct.pack()

 		
 Older interfaces

 		
 future.moves interface

 		
 Comparing future.moves and six.moves

 		
 import_ and from_import functions

 		
 Context-manager for import hooks

 		
 install_hooks() call (deprecated)

 		
 Changes in previous versions

 		
 Changes in version 0.14.3 (2014-12-15)

 		
 Changes in version 0.14.2 (2014-11-21)

 		
 Changes in version 0.14.1 (2014-10-02)

 		
 Changes in version 0.14.0 (2014-10-02)

 		
 Bug fixes

 		
 Internal cleanups

 		
 Deprecations

 		
 Changes in version 0.13.1 (2014-09-23)

 		
 Changes in version 0.13.0 (2014-08-13)

 		
 Deprecations

 		
 New features

 		
 Bug fixes

 		
 Changes in version 0.12.4 (2014-07-18)

 		
 Changes in version 0.12.3 (2014-06-19)

 		
 Changes in version 0.12.2 (2014-05-25)

 		
 Changes in version 0.12.1 (2014-05-14)

 		
 Changes in version 0.12.0 (2014-05-06)

 		
 More robust standard-library import hooks

 		
 newobject base object defines fallback Py2-compatible special methods

 		
 past.builtins module improved

 		
 surrogateescape error handler

 		
 newlist type

 		
 listvalues and listitems

 		
 Tests

 		
 Refactoring of future.standard_library.* -> future.backports

 		
 Backported http.server and urllib modules

 		
 Internal refactoring

 		
 Bug fixes

 		
 Changes in version 0.11.4 (2014-05-25)

 		
 Changes in version 0.11.3 (2014-02-27)

 		
 Improved compatibility with requests

 		
 Conversion scripts explicitly install import hooks

 		
 futurize script no longer adds unicode_literals by default

 		
 Changes in version 0.11 (2014-01-28)

 		
 past package

 		
 Auto-translation of Python 2 modules upon import

 		
 Separate pasteurize script

 		
 pow()

 		
 input() no longer disabled globally on Py2

 		
 Deprecated feature: auto-installation of standard-library import hooks

 		
 Internal changes

 		
 Changes in version 0.10.2 (2014-01-11)

 		
 New context-manager interface to standard_library.hooks

 		
 Changes in version 0.10.0 (2013-12-02)

 		
 Backported dict type

 		
 Utility functions raise_ and exec_

 		
 Bugfixes

 		
 Changes in version 0.9 (2013-11-06)

 		
 isinstance checks are supported natively with backported types

 		
 futurize: minimal imports by default

 		
 Looser type-checking for the backported str object

 		
 suspend_hooks() context manager added to future.standard_library

 		
 Changes in version 0.8 (2013-10-28)

 		
 Python 2.6 support

 		
 Unused modules removed

 		
 isinstance() added to future.builtins (v0.8.2)

 		
 Summary of all changes

 		
 Licensing and credits

 		
 Licence

 		
 Sponsors

 		
 Maintainer

 		
 Authors

 		
 Suggestions and Feedback

 		
 Other Credits

 		
 API Reference (in progress)

 		
 future.builtins Interface

 		
 Backported types from Python 3

 		
 For more information:

 		
 range()

 		
 super()

 		
 round()

 		
 future.standard_library Interface

 		
 Limitations

 		
 future.utils Interface

 		
 past.builtins Interface

 		
 Forward-ported types from Python 2

_static/minus.png

_static/file.png

